Skip to main content
RNA logoLink to RNA
. 2000 Mar;6(3):381–390. doi: 10.1017/s135583820099143x

Translation termination in eukaryotes: polypeptide release factor eRF1 is composed of functionally and structurally distinct domains.

L Y Frolova 1, T I Merkulova 1, L L Kisselev 1
PMCID: PMC1369920  PMID: 10744022

Abstract

Class-1 polypeptide chain release factors (RFs) trigger hydrolysis of peptidyl-tRNA at the ribosomal peptidyl transferase center mediated by one of the three termination codons. In eukaryotes, apart from catalyzing the translation termination reaction, eRF1 binds to and activates another factor, eRF3, which is a ribosome-dependent and eRF1-dependent GTPase. Because peptidyl-tRNA hydrolysis and GTP hydrolysis could be uncoupled in vitro, we suggest that the two main functions of eRF1 are associated with different domains of the eRF1 protein. We show here by deletion analysis that human eRF1 is composed of two physically separated and functionally distinct domains. The "core" domain is fully competent in ribosome binding and termination-codon-dependent peptidyl-tRNA hydrolysis, and encompasses the N-terminal and middle parts of the polypeptide chain. The C-terminal one-third of eRF1 binds to eRF3 in vivo in the absence of the core domain, but both domains are required to activate eRF3 GTPase in the ribosome. The calculated isoelectric points of the core and C domains are 9.74 and 4.23, respectively. This highly uneven charge distribution between the two domains implies that electrostatic interdomain interaction may affect the eRF1 binding to the ribosome and eRF3, its activity in the termination reaction and activation of eRF3 GTPase. The positively charged core of eRF1 may interact with negatively charged rRNA and peptidyl-tRNA phosphate backbones at the ribosomal eRF1 binding site and exhibit RNA-binding ability. The structural and functional dissimilarity of the core and eRF3-binding domains implies that evolutionarily eRF1 originated as a product of gene fusion.

Full Text

The Full Text of this article is available as a PDF (642.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown C. M., Tate W. P. Direct recognition of mRNA stop signals by Escherichia coli polypeptide chain release factor two. J Biol Chem. 1994 Dec 30;269(52):33164–33170. [PubMed] [Google Scholar]
  2. Buckingham R. H., Grentzmann G., Kisselev L. Polypeptide chain release factors. Mol Microbiol. 1997 May;24(3):449–456. doi: 10.1046/j.1365-2958.1997.3711734.x. [DOI] [PubMed] [Google Scholar]
  3. Ebihara K., Nakamura Y. C-terminal interaction of translational release factors eRF1 and eRF3 of fission yeast: G-domain uncoupled binding and the role of conserved amino acids. RNA. 1999 Jun;5(6):739–750. doi: 10.1017/s135583829998216x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eurwilaichitr L., Graves F. M., Stansfield I., Tuite M. F. The C-terminus of eRF1 defines a functionally important domain for translation termination in Saccharomyces cerevisiae. Mol Microbiol. 1999 May;32(3):485–496. doi: 10.1046/j.1365-2958.1999.01346.x. [DOI] [PubMed] [Google Scholar]
  5. Freistroffer D. V., Pavlov M. Y., MacDougall J., Buckingham R. H., Ehrenberg M. Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J. 1997 Jul 1;16(13):4126–4133. doi: 10.1093/emboj/16.13.4126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frolova L. Y., Simonsen J. L., Merkulova T. I., Litvinov D. Y., Martensen P. M., Rechinsky V. O., Camonis J. H., Kisselev L. L., Justesen J. Functional expression of eukaryotic polypeptide chain release factors 1 and 3 by means of baculovirus/insect cells and complex formation between the factors. Eur J Biochem. 1998 Aug 15;256(1):36–44. doi: 10.1046/j.1432-1327.1998.2560036.x. [DOI] [PubMed] [Google Scholar]
  7. Frolova L. Y., Tsivkovskii R. Y., Sivolobova G. F., Oparina N. Y., Serpinsky O. I., Blinov V. M., Tatkov S. I., Kisselev L. L. Mutations in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA. 1999 Aug;5(8):1014–1020. doi: 10.1017/s135583829999043x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Frolova L., Le Goff X., Zhouravleva G., Davydova E., Philippe M., Kisselev L. Eukaryotic polypeptide chain release factor eRF3 is an eRF1- and ribosome-dependent guanosine triphosphatase. RNA. 1996 Apr;2(4):334–341. [PMC free article] [PubMed] [Google Scholar]
  9. Grentzmann G., Brechemier-Baey D., Heurgue V., Mora L., Buckingham R. H. Localization and characterization of the gene encoding release factor RF3 in Escherichia coli. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5848–5852. doi: 10.1073/pnas.91.13.5848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grentzmann G., Kelly P. J., Laalami S., Shuda M., Firpo M. A., Cenatiempo Y., Kaji A. Release factor RF-3 GTPase activity acts in disassembly of the ribosome termination complex. RNA. 1998 Aug;4(8):973–983. doi: 10.1017/s1355838298971576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grentzmann G., Kelly P. J. Ribosomal binding site of release factors RF1 and RF2. A new translational termination assay in vitro. J Biol Chem. 1997 May 9;272(19):12300–12304. doi: 10.1074/jbc.272.19.12300. [DOI] [PubMed] [Google Scholar]
  12. Hoshino S., Imai M., Mizutani M., Kikuchi Y., Hanaoka F., Ui M., Katada T. Molecular cloning of a novel member of the eukaryotic polypeptide chain-releasing factors (eRF). Its identification as eRF3 interacting with eRF1. J Biol Chem. 1998 Aug 28;273(35):22254–22259. doi: 10.1074/jbc.273.35.22254. [DOI] [PubMed] [Google Scholar]
  13. Ito K., Ebihara K., Nakamura Y. The stretch of C-terminal acidic amino acids of translational release factor eRF1 is a primary binding site for eRF3 of fission yeast. RNA. 1998 Aug;4(8):958–972. doi: 10.1017/s1355838298971874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ito K., Ebihara K., Uno M., Nakamura Y. Conserved motifs in prokaryotic and eukaryotic polypeptide release factors: tRNA-protein mimicry hypothesis. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5443–5448. doi: 10.1073/pnas.93.11.5443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ito K., Uno M., Nakamura Y. Single amino acid substitution in prokaryote polypeptide release factor 2 permits it to terminate translation at all three stop codons. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8165–8169. doi: 10.1073/pnas.95.14.8165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jullien-Flores V., Dorseuil O., Romero F., Letourneur F., Saragosti S., Berger R., Tavitian A., Gacon G., Camonis J. H. Bridging Ral GTPase to Rho pathways. RLIP76, a Ral effector with CDC42/Rac GTPase-activating protein activity. J Biol Chem. 1995 Sep 22;270(38):22473–22477. doi: 10.1074/jbc.270.38.22473. [DOI] [PubMed] [Google Scholar]
  17. Konecki D. S., Aune K. C., Tate W., Caskey C. T. Characterization of reticulocyte release factor. J Biol Chem. 1977 Jul 10;252(13):4514–4520. [PubMed] [Google Scholar]
  18. Merkulova T. I., Frolova L. Y., Lazar M., Camonis J., Kisselev L. L. C-terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction. FEBS Lett. 1999 Jan 22;443(1):41–47. doi: 10.1016/s0014-5793(98)01669-x. [DOI] [PubMed] [Google Scholar]
  19. Mikuni O., Ito K., Moffat J., Matsumura K., McCaughan K., Nobukuni T., Tate W., Nakamura Y. Identification of the prfC gene, which encodes peptide-chain-release factor 3 of Escherichia coli. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):5798–5802. doi: 10.1073/pnas.91.13.5798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Moffat J. G., Tate W. P. A single proteolytic cleavage in release factor 2 stabilizes ribosome binding and abolishes peptidyl-tRNA hydrolysis activity. J Biol Chem. 1994 Jul 22;269(29):18899–18903. [PubMed] [Google Scholar]
  21. Nakamura Y., Ito K. How protein reads the stop codon and terminates translation. Genes Cells. 1998 May;3(5):265–278. doi: 10.1046/j.1365-2443.1998.00191.x. [DOI] [PubMed] [Google Scholar]
  22. Nakamura Y., Ito K., Isaksson L. A. Emerging understanding of translation termination. Cell. 1996 Oct 18;87(2):147–150. doi: 10.1016/s0092-8674(00)81331-8. [DOI] [PubMed] [Google Scholar]
  23. Nakamura Y., Ito K., Matsumura K., Kawazu Y., Ebihara K. Regulation of translation termination: conserved structural motifs in bacterial and eukaryotic polypeptide release factors. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1113–1122. doi: 10.1139/o95-120. [DOI] [PubMed] [Google Scholar]
  24. Paushkin S. V., Kushnirov V. V., Smirnov V. N., Ter-Avanesyan M. D. Interaction between yeast Sup45p (eRF1) and Sup35p (eRF3) polypeptide chain release factors: implications for prion-dependent regulation. Mol Cell Biol. 1997 May;17(5):2798–2805. doi: 10.1128/mcb.17.5.2798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pel H. J., Moffat J. G., Ito K., Nakamura Y., Tate W. P. Escherichia coli release factor 3: resolving the paradox of a typical G protein structure and atypical function with guanine nucleotides. RNA. 1998 Jan;4(1):47–54. [PMC free article] [PubMed] [Google Scholar]
  26. Scolnick E., Tompkins R., Caskey T., Nirenberg M. Release factors differing in specificity for terminator codons. Proc Natl Acad Sci U S A. 1968 Oct;61(2):768–774. doi: 10.1073/pnas.61.2.768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stansfield I., Jones K. M., Kushnirov V. V., Dagkesamanskaya A. R., Poznyakovski A. I., Paushkin S. V., Nierras C. R., Cox B. S., Ter-Avanesyan M. D., Tuite M. F. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 1995 Sep 1;14(17):4365–4373. doi: 10.1002/j.1460-2075.1995.tb00111.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stansfield I., Jones K. M., Tuite M. F. The end in sight: terminating translation in eukaryotes. Trends Biochem Sci. 1995 Dec;20(12):489–491. doi: 10.1016/s0968-0004(00)89113-6. [DOI] [PubMed] [Google Scholar]
  29. Tate W. P., Brown C. M. Translational termination: "stop" for protein synthesis or "pause" for regulation of gene expression. Biochemistry. 1992 Mar 10;31(9):2443–2450. doi: 10.1021/bi00124a001. [DOI] [PubMed] [Google Scholar]
  30. Tate W. P., Poole E. S., Mannering S. A. Hidden infidelities of the translational stop signal. Prog Nucleic Acid Res Mol Biol. 1996;52:293–335. doi: 10.1016/s0079-6603(08)60970-8. [DOI] [PubMed] [Google Scholar]
  31. Zhouravleva G., Frolova L., Le Goff X., Le Guellec R., Inge-Vechtomov S., Kisselev L., Philippe M. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 1995 Aug 15;14(16):4065–4072. doi: 10.1002/j.1460-2075.1995.tb00078.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES