Skip to main content
RNA logoLink to RNA
. 2000 Apr;6(4):475–484. doi: 10.1017/s1355838200002569

RNA-ligand chemistry: a testable source for the genetic code.

M Yarus 1
PMCID: PMC1369929  PMID: 10786839

Abstract

In the genetic code, triplet codons and amino acids can be shown to be related by chemical principles. Such chemical regularities could be created either during the code's origin or during later evolution. One such chemical principle can now be shown experimentally. Natural or particularly selected RNA binding sites for at least three disparate amino acids (arginine, isoleucine, and tyrosine) are enriched in codons for the cognate amino acid. Currently, in 517 total nucleotides, binding sites contain 2.4-fold more codon sequences than surrounding nucleotides. The aggregate probability of this enrichment is 10(-7) to 10(-8), had codons and binding site sequences been independent. Thus, at least some primordial coding assignments appear to have exploited triplets from amino acid binding sites as codons.

Full Text

The Full Text of this article is available as a PDF (361.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amirnovin R. An analysis of the metabolic theory of the origin of the genetic code. J Mol Evol. 1997 May;44(5):473–476. doi: 10.1007/pl00006170. [DOI] [PubMed] [Google Scholar]
  2. Burgstaller P., Kochoyan M., Famulok M. Structural probing and damage selection of citrulline- and arginine-specific RNA aptamers identify base positions required for binding. Nucleic Acids Res. 1995 Dec 11;23(23):4769–4776. doi: 10.1093/nar/23.23.4769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Connell G. J., Yarus M. RNAs with dual specificity and dual RNAs with similar specificity. Science. 1994 May 20;264(5162):1137–1141. doi: 10.1126/science.7513905. [DOI] [PubMed] [Google Scholar]
  4. Crick F. H. The origin of the genetic code. J Mol Biol. 1968 Dec;38(3):367–379. doi: 10.1016/0022-2836(68)90392-6. [DOI] [PubMed] [Google Scholar]
  5. Freeland S. J., Hurst L. D. The genetic code is one in a million. J Mol Evol. 1998 Sep;47(3):238–248. doi: 10.1007/pl00006381. [DOI] [PubMed] [Google Scholar]
  6. Geiger A., Burgstaller P., von der Eltz H., Roeder A., Famulok M. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res. 1996 Mar 15;24(6):1029–1036. doi: 10.1093/nar/24.6.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Haig D., Hurst L. D. A quantitative measure of error minimization in the genetic code. J Mol Evol. 1991 Nov;33(5):412–417. doi: 10.1007/BF02103132. [DOI] [PubMed] [Google Scholar]
  8. Illangasekare M., Yarus M. Specific, rapid synthesis of Phe-RNA by RNA. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5470–5475. doi: 10.1073/pnas.96.10.5470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Knight R. D., Landweber L. F. Rhyme or reason: RNA-arginine interactions and the genetic code. Chem Biol. 1998 Sep;5(9):R215–R220. doi: 10.1016/s1074-5521(98)90001-1. [DOI] [PubMed] [Google Scholar]
  10. Lacey J. C., Jr, Hall L. M., Mullins D. W., Jr Rationalization of some genetic anticodonic assignments. Orig Life Evol Biosph. 1985;16(1):69–79. doi: 10.1007/BF01808050. [DOI] [PubMed] [Google Scholar]
  11. Majerfeld I., Yarus M. An RNA pocket for an aliphatic hydrophobe. Nat Struct Biol. 1994 May;1(5):287–292. doi: 10.1038/nsb0594-287. [DOI] [PubMed] [Google Scholar]
  12. Majerfeld I., Yarus M. Isoleucine:RNA sites with associated coding sequences. RNA. 1998 Apr;4(4):471–478. [PMC free article] [PubMed] [Google Scholar]
  13. Mannironi C., Di Nardo A., Fruscoloni P., Tocchini-Valentini G. P. In vitro selection of dopamine RNA ligands. Biochemistry. 1997 Aug 12;36(32):9726–9734. doi: 10.1021/bi9700633. [DOI] [PubMed] [Google Scholar]
  14. Mannironi C., Scerch C., Fruscoloni P., Tocchini-Valentini G. P. Molecular recognition of amino acids by RNA aptamers: the evolution into an L-tyrosine binder of a dopamine-binding RNA motif. RNA. 2000 Apr;6(4):520–527. doi: 10.1017/s1355838200991763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Osawa S., Jukes T. H. Codon reassignment (codon capture) in evolution. J Mol Evol. 1989 Apr;28(4):271–278. doi: 10.1007/BF02103422. [DOI] [PubMed] [Google Scholar]
  16. doi: 10.1098/rspb.1998.0547. [DOI] [PMC free article] [Google Scholar]
  17. Paquin B., Kathe S. D., Nierzwicki-Bauer S. A., Shub D. A. Origin and evolution of group I introns in cyanobacterial tRNA genes. J Bacteriol. 1997 Nov;179(21):6798–6806. doi: 10.1128/jb.179.21.6798-6806.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tao J., Frankel A. D. Arginine-binding RNAs resembling TAR identified by in vitro selection. Biochemistry. 1996 Feb 20;35(7):2229–2238. doi: 10.1021/bi951844b. [DOI] [PubMed] [Google Scholar]
  19. Woese C. R., Dugre D. H., Saxinger W. C., Dugre S. A. The molecular basis for the genetic code. Proc Natl Acad Sci U S A. 1966 Apr;55(4):966–974. doi: 10.1073/pnas.55.4.966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Yang Y., Kochoyan M., Burgstaller P., Westhof E., Famulok M. Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science. 1996 May 31;272(5266):1343–1347. doi: 10.1126/science.272.5266.1343. [DOI] [PubMed] [Google Scholar]
  21. Yarus M. A specific amino acid binding site composed of RNA. Science. 1988 Jun 24;240(4860):1751–1758. doi: 10.1126/science.3381099. [DOI] [PubMed] [Google Scholar]
  22. Yarus M. Amino acids as RNA ligands: a direct-RNA-template theory for the code's origin. J Mol Evol. 1998 Jul;47(1):109–117. doi: 10.1007/pl00006357. [DOI] [PubMed] [Google Scholar]
  23. Yarus M. Boundaries for an RNA world. Curr Opin Chem Biol. 1999 Jun;3(3):260–267. doi: 10.1016/S1367-5931(99)80041-6. [DOI] [PubMed] [Google Scholar]
  24. Yarus M., Christian E. L. Genetic code origins. Nature. 1989 Nov 23;342(6248):349–350. doi: 10.1038/342349b0. [DOI] [PubMed] [Google Scholar]
  25. Zinnen S., Yarus M. An RNA pocket for the planar aromatic side chains of phenylalanine and tryptophane. Nucleic Acids Symp Ser. 1995;(33):148–151. [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES