Skip to main content
RNA logoLink to RNA
. 2000 Apr;6(4):485–498. doi: 10.1017/s1355838200000224

The scene of a frozen accident.

A D Ellington 1, M Khrapov 1, C A Shaw 1
PMCID: PMC1369930  PMID: 10786840

Abstract

It has been suggested that in vitro selection experiments can provide information not only on what might have occurred during the evolution of the RNA world, but can in fact yield insights into particular features of the RNA world. In particular, it has been suggested that the sequences of anti-amino acid aptamers can provide clues to the origin of the genetic code, and that there is a statistically significant association between motifs found in aptamers and codons. We argue that the suggested connections between modern motifs and ancient sequences are logically tenuous, and show that there is no statistically meaningful association between motifs found in aptamers and codons.

Full Text

The Full Text of this article is available as a PDF (812.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baskerville S., Zapp M., Ellington A. D. Anti-Rex aptamers as mimics of the Rex-binding element. J Virol. 1999 Jun;73(6):4962–4971. doi: 10.1128/jvi.73.6.4962-4971.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burgstaller P., Kochoyan M., Famulok M. Structural probing and damage selection of citrulline- and arginine-specific RNA aptamers identify base positions required for binding. Nucleic Acids Res. 1995 Dec 11;23(23):4769–4776. doi: 10.1093/nar/23.23.4769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Connell G. J., Illangesekare M., Yarus M. Three small ribooligonucleotides with specific arginine sites. Biochemistry. 1993 Jun 1;32(21):5497–5502. doi: 10.1021/bi00072a002. [DOI] [PubMed] [Google Scholar]
  4. Connell G. J., Yarus M. RNAs with dual specificity and dual RNAs with similar specificity. Science. 1994 May 20;264(5162):1137–1141. doi: 10.1126/science.7513905. [DOI] [PubMed] [Google Scholar]
  5. Ellington A. D. Molecular origins and the null hypothesis: motifs from our maker? Biol Bull. 1999 Jun;196(3):315–319. doi: 10.2307/1542958. [DOI] [PubMed] [Google Scholar]
  6. Freeland S. J., Hurst L. D. The genetic code is one in a million. J Mol Evol. 1998 Sep;47(3):238–248. doi: 10.1007/pl00006381. [DOI] [PubMed] [Google Scholar]
  7. Geiger A., Burgstaller P., von der Eltz H., Roeder A., Famulok M. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res. 1996 Mar 15;24(6):1029–1036. doi: 10.1093/nar/24.6.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Giver L., Bartel D., Zapp M., Pawul A., Green M., Ellington A. D. Selective optimization of the Rev-binding element of HIV-1. Nucleic Acids Res. 1993 Nov 25;21(23):5509–5516. doi: 10.1093/nar/21.23.5509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guerrier-Takada C., van Belkum A., Pleij C. W., Altman S. Novel reactions of RNAase P with a tRNA-like structure in turnip yellow mosaic virus RNA. Cell. 1988 Apr 22;53(2):267–272. doi: 10.1016/0092-8674(88)90388-1. [DOI] [PubMed] [Google Scholar]
  10. Haenni A. L., Joshi S., Chapeville F. tRNA-like structures in the genomes of RNA viruses. Prog Nucleic Acid Res Mol Biol. 1982;27:85–104. doi: 10.1016/s0079-6603(08)60598-x. [DOI] [PubMed] [Google Scholar]
  11. Hicke B. J., Christian E. L., Yarus M. Stereoselective arginine binding is a phylogenetically conserved property of group I self-splicing RNAs. EMBO J. 1989 Dec 1;8(12):3843–3851. doi: 10.1002/j.1460-2075.1989.tb08562.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hirao I., Ellington A. D. Re-creating the RNA world. Curr Biol. 1995 Sep 1;5(9):1017–1022. doi: 10.1016/s0960-9822(95)00205-3. [DOI] [PubMed] [Google Scholar]
  13. Illangasekare M., Kovalchuke O., Yarus M. Essential structures of a self-aminoacylating RNA. J Mol Biol. 1997 Dec 12;274(4):519–529. doi: 10.1006/jmbi.1997.1414. [DOI] [PubMed] [Google Scholar]
  14. Illangasekare M., Sanchez G., Nickles T., Yarus M. Aminoacyl-RNA synthesis catalyzed by an RNA. Science. 1995 Feb 3;267(5198):643–647. doi: 10.1126/science.7530860. [DOI] [PubMed] [Google Scholar]
  15. Illangasekare M., Yarus M. Specific, rapid synthesis of Phe-RNA by RNA. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5470–5475. doi: 10.1073/pnas.96.10.5470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. James K. D., Ellington A. D. Surprising fidelity of template-directed chemical ligation of oligonucleotides. Chem Biol. 1997 Aug;4(8):595–605. doi: 10.1016/s1074-5521(97)90245-3. [DOI] [PubMed] [Google Scholar]
  17. James K. D., Ellington A. D. The search for missing links between self-replicating nucleic acids and the RNA world. Orig Life Evol Biosph. 1995 Dec;25(6):515–530. doi: 10.1007/BF01582021. [DOI] [PubMed] [Google Scholar]
  18. Jiang F., Gorin A., Hu W., Majumdar A., Baskerville S., Xu W., Ellington A., Patel D. J. Anchoring an extended HTLV-1 Rex peptide within an RNA major groove containing junctional base triples. Structure. 1999 Dec 15;7(12):1461–1472. doi: 10.1016/s0969-2126(00)88337-9. [DOI] [PubMed] [Google Scholar]
  19. Khaitovich P., Mankin A. S., Green R., Lancaster L., Noller H. F. Characterization of functionally active subribosomal particles from Thermus aquaticus. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):85–90. doi: 10.1073/pnas.96.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Knight R. D., Freeland S. J., Landweber L. F. Selection, history and chemistry: the three faces of the genetic code. Trends Biochem Sci. 1999 Jun;24(6):241–247. doi: 10.1016/s0968-0004(99)01392-4. [DOI] [PubMed] [Google Scholar]
  21. Knight R. D., Landweber L. F. Guilt by association: the arginine case revisited. RNA. 2000 Apr;6(4):499–510. doi: 10.1017/s1355838200000145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Knight R. D., Landweber L. F. Rhyme or reason: RNA-arginine interactions and the genetic code. Chem Biol. 1998 Sep;5(9):R215–R220. doi: 10.1016/s1074-5521(98)90001-1. [DOI] [PubMed] [Google Scholar]
  23. Landweber L. F. Testing ancient RNA-protein interactions. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11067–11068. doi: 10.1073/pnas.96.20.11067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Majerfeld I., Yarus M. Isoleucine:RNA sites with associated coding sequences. RNA. 1998 Apr;4(4):471–478. [PMC free article] [PubMed] [Google Scholar]
  25. Noller H. F., Hoffarth V., Zimniak L. Unusual resistance of peptidyl transferase to protein extraction procedures. Science. 1992 Jun 5;256(5062):1416–1419. doi: 10.1126/science.1604315. [DOI] [PubMed] [Google Scholar]
  26. Osborne Scott E., Ellington Andrew D. Nucleic Acid Selection and the Challenge of Combinatorial Chemistry. Chem Rev. 1997 Apr 1;97(2):349–370. doi: 10.1021/cr960009c. [DOI] [PubMed] [Google Scholar]
  27. Peterson E. T., Blank J., Sprinzl M., Uhlenbeck O. C. Selection for active E. coli tRNA(Phe) variants from a randomized library using two proteins. EMBO J. 1993 Jul;12(7):2959–2967. doi: 10.1002/j.1460-2075.1993.tb05958.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Peterson E. T., Pan T., Coleman J., Uhlenbeck O. C. In vitro selection of small RNAs that bind to Escherichia coli phenylalanyl-tRNA synthetase. J Mol Biol. 1994 Sep 23;242(3):186–192. doi: 10.1006/jmbi.1994.1571. [DOI] [PubMed] [Google Scholar]
  29. Tao J., Frankel A. D. Arginine-binding RNAs resembling TAR identified by in vitro selection. Biochemistry. 1996 Feb 20;35(7):2229–2238. doi: 10.1021/bi951844b. [DOI] [PubMed] [Google Scholar]
  30. Tuerk C., MacDougal S., Gold L. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6988–6992. doi: 10.1073/pnas.89.15.6988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yang Y., Kochoyan M., Burgstaller P., Westhof E., Famulok M. Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science. 1996 May 31;272(5266):1343–1347. doi: 10.1126/science.272.5266.1343. [DOI] [PubMed] [Google Scholar]
  32. Yarus M. A specific amino acid binding site composed of RNA. Science. 1988 Jun 24;240(4860):1751–1758. doi: 10.1126/science.3381099. [DOI] [PubMed] [Google Scholar]
  33. Yarus M. Amino acids as RNA ligands: a direct-RNA-template theory for the code's origin. J Mol Evol. 1998 Jul;47(1):109–117. doi: 10.1007/pl00006357. [DOI] [PubMed] [Google Scholar]
  34. Yarus M. An RNA-amino acid complex and the origin of the genetic code. New Biol. 1991 Feb;3(2):183–189. [PubMed] [Google Scholar]
  35. Yarus M., Christian E. L. Genetic code origins. Nature. 1989 Nov 23;342(6248):349–350. doi: 10.1038/342349b0. [DOI] [PubMed] [Google Scholar]
  36. Ye X., Gorin A., Ellington A. D., Patel D. J. Deep penetration of an alpha-helix into a widened RNA major groove in the HIV-1 rev peptide-RNA aptamer complex. Nat Struct Biol. 1996 Dec;3(12):1026–1033. doi: 10.1038/nsb1296-1026. [DOI] [PubMed] [Google Scholar]
  37. Zhang B., Cech T. R. Peptide bond formation by in vitro selected ribozymes. Nature. 1997 Nov 6;390(6655):96–100. doi: 10.1038/36375. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES