Abstract
If the genetic code arose in an RNA world, present codon assignments may reflect primordial RNA-amino acid affinities. Whether aptamers selected from random pools to bind free amino acids do so using the cognate codons at their binding sites has been controversial. Here we defend and extend our previous analysis of arginine binding sites, and propose a model for the maintenance of codon-amino acid interactions through the evolution of amino acids from ribozyme cofactors into the building blocks of proteins.
Full Text
The Full Text of this article is available as a PDF (650.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ardell D. H. On error minimization in a sequential origin of the standard genetic code. J Mol Evol. 1998 Jul;47(1):1–13. doi: 10.1007/pl00006356. [DOI] [PubMed] [Google Scholar]
- Connell G. J., Yarus M. RNAs with dual specificity and dual RNAs with similar specificity. Science. 1994 May 20;264(5162):1137–1141. doi: 10.1126/science.7513905. [DOI] [PubMed] [Google Scholar]
- Crick F. H. The origin of the genetic code. J Mol Biol. 1968 Dec;38(3):367–379. doi: 10.1016/0022-2836(68)90392-6. [DOI] [PubMed] [Google Scholar]
- Ellington A. D., Khrapov M., Shaw C. A. The scene of a frozen accident. RNA. 2000 Apr;6(4):485–498. doi: 10.1017/s1355838200000224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fan P., Suri A. K., Fiala R., Live D., Patel D. J. Molecular recognition in the FMN-RNA aptamer complex. J Mol Biol. 1996 May 10;258(3):480–500. doi: 10.1006/jmbi.1996.0263. [DOI] [PubMed] [Google Scholar]
- Freeland S. J., Hurst L. D. The genetic code is one in a million. J Mol Evol. 1998 Sep;47(3):238–248. doi: 10.1007/pl00006381. [DOI] [PubMed] [Google Scholar]
- Geiger A., Burgstaller P., von der Eltz H., Roeder A., Famulok M. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res. 1996 Mar 15;24(6):1029–1036. doi: 10.1093/nar/24.6.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ibba M., Söll D. Quality control mechanisms during translation. Science. 1999 Dec 3;286(5446):1893–1897. doi: 10.1126/science.286.5446.1893. [DOI] [PubMed] [Google Scholar]
- Illangasekare M., Sanchez G., Nickles T., Yarus M. Aminoacyl-RNA synthesis catalyzed by an RNA. Science. 1995 Feb 3;267(5198):643–647. doi: 10.1126/science.7530860. [DOI] [PubMed] [Google Scholar]
- Illangasekare M., Yarus M. Specific, rapid synthesis of Phe-RNA by RNA. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5470–5475. doi: 10.1073/pnas.96.10.5470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jiang F., Kumar R. A., Jones R. A., Patel D. J. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature. 1996 Jul 11;382(6587):183–186. doi: 10.1038/382183a0. [DOI] [PubMed] [Google Scholar]
- Jiang L., Majumdar A., Hu W., Jaishree T. J., Xu W., Patel D. J. Saccharide-RNA recognition in a complex formed between neomycin B and an RNA aptamer. Structure. 1999 Jul 15;7(7):817–827. doi: 10.1016/s0969-2126(99)80105-1. [DOI] [PubMed] [Google Scholar]
- Jiang L., Patel D. J. Solution structure of the tobramycin-RNA aptamer complex. Nat Struct Biol. 1998 Sep;5(9):769–774. doi: 10.1038/1804. [DOI] [PubMed] [Google Scholar]
- Jiang L., Suri A. K., Fiala R., Patel D. J. Saccharide-RNA recognition in an aminoglycoside antibiotic-RNA aptamer complex. Chem Biol. 1997 Jan;4(1):35–50. doi: 10.1016/s1074-5521(97)90235-0. [DOI] [PubMed] [Google Scholar]
- Knight R. D., Freeland S. J., Landweber L. F. Selection, history and chemistry: the three faces of the genetic code. Trends Biochem Sci. 1999 Jun;24(6):241–247. doi: 10.1016/s0968-0004(99)01392-4. [DOI] [PubMed] [Google Scholar]
- Knight R. D., Landweber L. F. Rhyme or reason: RNA-arginine interactions and the genetic code. Chem Biol. 1998 Sep;5(9):R215–R220. doi: 10.1016/s1074-5521(98)90001-1. [DOI] [PubMed] [Google Scholar]
- Lacey J. C., Jr, Mullins D. W., Jr Experimental studies related to the origin of the genetic code and the process of protein synthesis--a review. Orig Life. 1983 Mar;13(1):3–42. doi: 10.1007/BF00928761. [DOI] [PubMed] [Google Scholar]
- Lacey J. C., Jr, Wickramasinghe N. S., Cook G. W. Experimental studies on the origin of the genetic code and the process of protein synthesis: a review update. Orig Life Evol Biosph. 1992;22(5):243–275. doi: 10.1007/BF01810856. [DOI] [PubMed] [Google Scholar]
- Lazcano A., Miller S. L. The origin and early evolution of life: prebiotic chemistry, the pre-RNA world, and time. Cell. 1996 Jun 14;85(6):793–798. doi: 10.1016/s0092-8674(00)81263-5. [DOI] [PubMed] [Google Scholar]
- Lin C. H., Wang W., Jones R. A., Patel D. J. Formation of an amino-acid-binding pocket through adaptive zippering-up of a large DNA hairpin loop. Chem Biol. 1998 Oct;5(10):555–572. doi: 10.1016/s1074-5521(98)90114-4. [DOI] [PubMed] [Google Scholar]
- Lohse P. A., Szostak J. W. Ribozyme-catalysed amino-acid transfer reactions. Nature. 1996 May 30;381(6581):442–444. doi: 10.1038/381442a0. [DOI] [PubMed] [Google Scholar]
- Miller S. L. Which organic compounds could have occurred on the prebiotic earth? Cold Spring Harb Symp Quant Biol. 1987;52:17–27. doi: 10.1101/sqb.1987.052.01.005. [DOI] [PubMed] [Google Scholar]
- Osawa S., Jukes T. H. Codon reassignment (codon capture) in evolution. J Mol Evol. 1989 Apr;28(4):271–278. doi: 10.1007/BF02103422. [DOI] [PubMed] [Google Scholar]
- Robertson S. A., Harada K., Frankel A. D., Wemmer D. E. Structure determination and binding kinetics of a DNA aptamer-argininamide complex. Biochemistry. 2000 Feb 8;39(5):946–954. doi: 10.1021/bi9915061. [DOI] [PubMed] [Google Scholar]
- Schultz D. W., Yarus M. Transfer RNA mutation and the malleability of the genetic code. J Mol Biol. 1994 Feb 4;235(5):1377–1380. doi: 10.1006/jmbi.1994.1094. [DOI] [PubMed] [Google Scholar]
- Szathmáry E. Coding coenzyme handles: a hypothesis for the origin of the genetic code. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9916–9920. doi: 10.1073/pnas.90.21.9916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Szathmáry E. The origin of the genetic code: amino acids as cofactors in an RNA world. Trends Genet. 1999 Jun;15(6):223–229. doi: 10.1016/s0168-9525(99)01730-8. [DOI] [PubMed] [Google Scholar]
- Tao J., Frankel A. D. Arginine-binding RNAs resembling TAR identified by in vitro selection. Biochemistry. 1996 Feb 20;35(7):2229–2238. doi: 10.1021/bi951844b. [DOI] [PubMed] [Google Scholar]
- Weber A. L., Miller S. L. Reasons for the occurrence of the twenty coded protein amino acids. J Mol Evol. 1981;17(5):273–284. doi: 10.1007/BF01795749. [DOI] [PubMed] [Google Scholar]
- Welch M., Majerfeld I., Yarus M. 23S rRNA similarity from selection for peptidyl transferase mimicry. Biochemistry. 1997 Jun 3;36(22):6614–6623. doi: 10.1021/bi963135j. [DOI] [PubMed] [Google Scholar]
- Woese C. R., Dugre D. H., Dugre S. A., Kondo M., Saxinger W. C. On the fundamental nature and evolution of the genetic code. Cold Spring Harb Symp Quant Biol. 1966;31:723–736. doi: 10.1101/sqb.1966.031.01.093. [DOI] [PubMed] [Google Scholar]
- Wong J. T. A co-evolution theory of the genetic code. Proc Natl Acad Sci U S A. 1975 May;72(5):1909–1912. doi: 10.1073/pnas.72.5.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wong J. T., Bronskill P. M. Inadequacy of prebiotic synthesis as origin of proteinous amino acids. J Mol Evol. 1979 Jul 18;13(2):115–125. doi: 10.1007/BF01732867. [DOI] [PubMed] [Google Scholar]
- Yang Y., Kochoyan M., Burgstaller P., Westhof E., Famulok M. Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science. 1996 May 31;272(5266):1343–1347. doi: 10.1126/science.272.5266.1343. [DOI] [PubMed] [Google Scholar]
- Yarus M. Amino acids as RNA ligands: a direct-RNA-template theory for the code's origin. J Mol Evol. 1998 Jul;47(1):109–117. doi: 10.1007/pl00006357. [DOI] [PubMed] [Google Scholar]
- Yarus M., Christian E. L. Genetic code origins. Nature. 1989 Nov 23;342(6248):349–350. doi: 10.1038/342349b0. [DOI] [PubMed] [Google Scholar]
- Yarus M. RNA-ligand chemistry: a testable source for the genetic code. RNA. 2000 Apr;6(4):475–484. doi: 10.1017/s1355838200002569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zimmermann G. R., Shields T. P., Jenison R. D., Wick C. L., Pardi A. A semiconserved residue inhibits complex formation by stabilizing interactions in the free state of a theophylline-binding RNA. Biochemistry. 1998 Jun 23;37(25):9186–9192. doi: 10.1021/bi980082s. [DOI] [PubMed] [Google Scholar]
- von Döhren H., Dieckmann R., Pavela-Vrancic M. The nonribosomal code. Chem Biol. 1999 Oct;6(10):R273–R279. doi: 10.1016/s1074-5521(00)80014-9. [DOI] [PubMed] [Google Scholar]