Skip to main content
RNA logoLink to RNA
. 2000 Apr;6(4):520–527. doi: 10.1017/s1355838200991763

Molecular recognition of amino acids by RNA aptamers: the evolution into an L-tyrosine binder of a dopamine-binding RNA motif.

C Mannironi 1, C Scerch 1, P Fruscoloni 1, G P Tocchini-Valentini 1
PMCID: PMC1369933  PMID: 10786843

Abstract

We report the evolution of an RNA aptamer to change its binding specificity. RNA aptamers that bind the free amino acid tyrosine were in vitro selected from a degenerate pool derived from a previously selected dopamine aptamer. Three independent sequences bind tyrosine in solution, the winner of the selection binding with a dissociation constant of 35 microM. Competitive affinity chromatography with tyrosine-related ligands indicated that the selected aptamers are highly L-stereo selective and also recognize L-tryptophan and L-dopa with similar affinity. The binding site was localized by sequence comparison, analysis of minimal boundaries, and structural probing upon ligand binding. Tyrosine-binding sites are characterized by the presence of both tyrosine (UAU and UAC) and termination (UAG and UAA) triplets.

Full Text

The Full Text of this article is available as a PDF (623.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burgstaller P., Kochoyan M., Famulok M. Structural probing and damage selection of citrulline- and arginine-specific RNA aptamers identify base positions required for binding. Nucleic Acids Res. 1995 Dec 11;23(23):4769–4776. doi: 10.1093/nar/23.23.4769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Connell G. J., Illangesekare M., Yarus M. Three small ribooligonucleotides with specific arginine sites. Biochemistry. 1993 Jun 1;32(21):5497–5502. doi: 10.1021/bi00072a002. [DOI] [PubMed] [Google Scholar]
  3. Connell G. J., Yarus M. RNAs with dual specificity and dual RNAs with similar specificity. Science. 1994 May 20;264(5162):1137–1141. doi: 10.1126/science.7513905. [DOI] [PubMed] [Google Scholar]
  4. Costa M., Fontaine J. M., Loiseaux-de Goër S., Michel F. A group II self-splicing intron from the brown alga Pylaiella littoralis is active at unusually low magnesium concentrations and forms populations of molecules with a uniform conformation. J Mol Biol. 1997 Dec 5;274(3):353–364. doi: 10.1006/jmbi.1997.1416. [DOI] [PubMed] [Google Scholar]
  5. Geiger A., Burgstaller P., von der Eltz H., Roeder A., Famulok M. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res. 1996 Mar 15;24(6):1029–1036. doi: 10.1093/nar/24.6.1029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hicke B. J., Christian E. L., Yarus M. Stereoselective arginine binding is a phylogenetically conserved property of group I self-splicing RNAs. EMBO J. 1989 Dec 1;8(12):3843–3851. doi: 10.1002/j.1460-2075.1989.tb08562.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Knight R. D., Freeland S. J., Landweber L. F. Selection, history and chemistry: the three faces of the genetic code. Trends Biochem Sci. 1999 Jun;24(6):241–247. doi: 10.1016/s0968-0004(99)01392-4. [DOI] [PubMed] [Google Scholar]
  8. Knight R. D., Landweber L. F. Rhyme or reason: RNA-arginine interactions and the genetic code. Chem Biol. 1998 Sep;5(9):R215–R220. doi: 10.1016/s1074-5521(98)90001-1. [DOI] [PubMed] [Google Scholar]
  9. Majerfeld I., Yarus M. An RNA pocket for an aliphatic hydrophobe. Nat Struct Biol. 1994 May;1(5):287–292. doi: 10.1038/nsb0594-287. [DOI] [PubMed] [Google Scholar]
  10. Majerfeld I., Yarus M. Isoleucine:RNA sites with associated coding sequences. RNA. 1998 Apr;4(4):471–478. [PMC free article] [PubMed] [Google Scholar]
  11. Mannironi C., Di Nardo A., Fruscoloni P., Tocchini-Valentini G. P. In vitro selection of dopamine RNA ligands. Biochemistry. 1997 Aug 12;36(32):9726–9734. doi: 10.1021/bi9700633. [DOI] [PubMed] [Google Scholar]
  12. Pan T., Uhlenbeck O. C. In vitro selection of RNAs that undergo autolytic cleavage with Pb2+. Biochemistry. 1992 Apr 28;31(16):3887–3895. doi: 10.1021/bi00131a001. [DOI] [PubMed] [Google Scholar]
  13. Tao J., Frankel A. D. Arginine-binding RNAs resembling TAR identified by in vitro selection. Biochemistry. 1996 Feb 20;35(7):2229–2238. doi: 10.1021/bi951844b. [DOI] [PubMed] [Google Scholar]
  14. Yarus M. A specific amino acid binding site composed of RNA. Science. 1988 Jun 24;240(4860):1751–1758. doi: 10.1126/science.3381099. [DOI] [PubMed] [Google Scholar]
  15. Yarus M. Amino acids as RNA ligands: a direct-RNA-template theory for the code's origin. J Mol Evol. 1998 Jul;47(1):109–117. doi: 10.1007/pl00006357. [DOI] [PubMed] [Google Scholar]
  16. Zinnen S., Yarus M. An RNA pocket for the planar aromatic side chains of phenylalanine and tryptophane. Nucleic Acids Symp Ser. 1995;(33):148–151. [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES