Skip to main content
RNA logoLink to RNA
. 2000 Apr;6(4):563–570. doi: 10.1017/s1355838200992318

Determination of preferential binding sites for anti-dsRNA antibodies on double-stranded RNA by scanning force microscopy.

M Bonin 1, J Oberstrass 1, N Lukacs 1, K Ewert 1, E Oesterschulze 1, R Kassing 1, W Nellen 1
PMCID: PMC1369937  PMID: 10786847

Abstract

The monoclonal anti-dsRNA antibody J2 binds double-stranded RNAs (dsRNA) in an apparently sequence-nonspecific way. The mAb only recognizes antigens with double-stranded regions of at least 40 bp and its affinity to poly(A) poly(U) and to dsRNAs with mixed base pair composition is about tenfold higher than to poly(I) poly(C). Because no specific binding site could be determined, the number, the exact dimensions, and other distinct features of the binding sites on a given antigen are difficult to evaluate by biochemical methods. We therefore employed scanning force microscopy (SFM) as a method to analyze antibody-dsRNA interaction and protein-RNA binding in general. Several in vitro-synthesized dsRNA substrates, generated from the Dictyostelium PSV-A gene, were used. In addition to the expected sequence-nonspecific binding, imaging of the complexes indicated preferential binding of antibodies to the ends of dsRNA molecules as well as to certain internal sites. Analysis of 2,000 bound antibodies suggested that the consensus sequence of a preferential internal binding site is A2N9A3N9A2, thus presenting A residues on one face of the helix. The site was verified by site-directed mutagenesis, which abolished preferential binding to this region. The data demonstrate that SFM can be efficiently used to identify and characterize binding sites for proteins with no or incomplete sequence specificity. This is especially the case for many proteins involved in RNA metabolism.

Full Text

The Full Text of this article is available as a PDF (232.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali R., Dersimonian H., Stollar B. D. Binding of monoclonal anti-native DNA autoantibodies to DNA of varying size and conformation. Mol Immunol. 1985 Dec;22(12):1415–1422. doi: 10.1016/0161-5890(85)90065-3. [DOI] [PubMed] [Google Scholar]
  2. Allen M. J., Bradbury E. M., Balhorn R. AFM analysis of DNA-protamine complexes bound to mica. Nucleic Acids Res. 1997 Jun 1;25(11):2221–2226. doi: 10.1093/nar/25.11.2221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnott S., Hukins D. W., Dover S. D., Fuller W., Hodgson A. R. Structures of synthetic polynucleotides in the A-RNA and A'-RNA conformations: x-ray diffraction analyses of the molecular conformations of polyadenylic acid--polyuridylic acid and polyinosinic acid--polycytidylic acid. J Mol Biol. 1973 Dec 5;81(2):107–122. doi: 10.1016/0022-2836(73)90183-6. [DOI] [PubMed] [Google Scholar]
  4. Burkhoff A. M., Tullius T. D. The unusual conformation adopted by the adenine tracts in kinetoplast DNA. Cell. 1987 Mar 27;48(6):935–943. doi: 10.1016/0092-8674(87)90702-1. [DOI] [PubMed] [Google Scholar]
  5. Bustamante C., Rivetti C. Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. Annu Rev Biophys Biomol Struct. 1996;25:395–429. doi: 10.1146/annurev.bb.25.060196.002143. [DOI] [PubMed] [Google Scholar]
  6. Bycroft M., Grünert S., Murzin A. G., Proctor M., St Johnston D. NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. EMBO J. 1995 Jul 17;14(14):3563–3571. doi: 10.1002/j.1460-2075.1995.tb07362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Finerty P. J., Jr, Bass B. L. A Xenopus zinc finger protein that specifically binds dsRNA and RNA-DNA hybrids. J Mol Biol. 1997 Aug 15;271(2):195–208. doi: 10.1006/jmbi.1997.1177. [DOI] [PubMed] [Google Scholar]
  8. Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998 Feb 19;391(6669):806–811. doi: 10.1038/35888. [DOI] [PubMed] [Google Scholar]
  9. Fritzsche W., Schaper A., Jovin T. M. Probing chromatin with the scanning force microscope. Chromosoma. 1994 Jul;103(4):231–236. doi: 10.1007/BF00352247. [DOI] [PubMed] [Google Scholar]
  10. Gilbert D., Brard F., Courville P., Joly P., Lauret P., Tron F. Do certain autoantibodies produced in the course of human autoimmune blistering skin diseases behave as adhesion molecules? Ann N Y Acad Sci. 1997 Apr 5;815:506–508. doi: 10.1111/j.1749-6632.1997.tb52116.x. [DOI] [PubMed] [Google Scholar]
  11. Goodman T. C., Nagel L., Rappold W., Klotz G., Riesner D. Viroid replication: equilibrium association constant and comparative activity measurements for the viroid-polymerase interaction. Nucleic Acids Res. 1984 Aug 10;12(15):6231–6246. doi: 10.1093/nar/12.15.6231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guthold M., Bezanilla M., Erie D. A., Jenkins B., Hansma H. G., Bustamante C. Following the assembly of RNA polymerase-DNA complexes in aqueous solutions with the scanning force microscope. Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12927–12931. doi: 10.1073/pnas.91.26.12927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hansma H. G., Golan R., Hsieh W., Lollo C. P., Mullen-Ley P., Kwoh D. DNA condensation for gene therapy as monitored by atomic force microscopy. Nucleic Acids Res. 1998 May 15;26(10):2481–2487. doi: 10.1093/nar/26.10.2481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hecker R., Wang Z. M., Steger G., Riesner D. Analysis of RNA structures by temperature-gradient gel electrophoresis: viroid replication and processing. Gene. 1988 Dec 10;72(1-2):59–74. doi: 10.1016/0378-1119(88)90128-x. [DOI] [PubMed] [Google Scholar]
  15. Hildebrandt M., Humbel B. M., Nellen W. The Dictyostelium discoideum EB4 gene product and a truncated mutant form of the protein are localized in prespore vesicles but absent from mature spores. Dev Biol. 1991 Mar;144(1):212–214. doi: 10.1016/0012-1606(91)90492-l. [DOI] [PubMed] [Google Scholar]
  16. Hildebrandt M., Nellen W. Differential antisense transcription from the Dictyostelium EB4 gene locus: implications on antisense-mediated regulation of mRNA stability. Cell. 1992 Apr 3;69(1):197–204. doi: 10.1016/0092-8674(92)90130-5. [DOI] [PubMed] [Google Scholar]
  17. Kharrat A., Macias M. J., Gibson T. J., Nilges M., Pastore A. Structure of the dsRNA binding domain of E. coli RNase III. EMBO J. 1995 Jul 17;14(14):3572–3584. doi: 10.1002/j.1460-2075.1995.tb07363.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lukács N. Detection of virus infection in plants and differentiation between coexisting viruses by monoclonal antibodies to double-stranded RNA. J Virol Methods. 1994 May;47(3):255–272. doi: 10.1016/0166-0934(94)90023-x. [DOI] [PubMed] [Google Scholar]
  19. Michalowski S., Miller J. W., Urbinati C. R., Paliouras M., Swanson M. S., Griffith J. Visualization of double-stranded RNAs from the myotonic dystrophy protein kinase gene and interactions with CUG-binding protein. Nucleic Acids Res. 1999 Sep 1;27(17):3534–3542. doi: 10.1093/nar/27.17.3534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Montgomery M. K., Fire A. Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression. Trends Genet. 1998 Jul;14(7):255–258. doi: 10.1016/s0168-9525(98)01510-8. [DOI] [PubMed] [Google Scholar]
  21. Nahon-Merlin E., Delain E., Coulaud D., Lacour F. Electron microscopy of the reactions of anti-poly A. poly U and anti-poly I. poly C antibodies with synthetic polynucleotide complexes and natural nucleic acids. Nucleic Acids Res. 1980 Apr 25;8(8):1805–1822. doi: 10.1093/nar/8.8.1805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nanduri S., Carpick B. W., Yang Y., Williams B. R., Qin J. Structure of the double-stranded RNA-binding domain of the protein kinase PKR reveals the molecular basis of its dsRNA-mediated activation. EMBO J. 1998 Sep 15;17(18):5458–5465. doi: 10.1093/emboj/17.18.5458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nordheim A., Meese K. Topoisomer gel retardation: detection of anti-Z-DNA antibodies bound to Z-DNA within supercoiled DNA minicircles. Nucleic Acids Res. 1988 Jan 11;16(1):21–37. doi: 10.1093/nar/16.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pietrasanta L. I., Schaper A., Jovin T. M. Probing specific molecular conformations with the scanning force microscope. Complexes of plasmid DNA and anti-Z-DNA antibodies. Nucleic Acids Res. 1994 Aug 25;22(16):3288–3292. doi: 10.1093/nar/22.16.3288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Radic M. Z., Weigert M. Genetic and structural evidence for antigen selection of anti-DNA antibodies. Annu Rev Immunol. 1994;12:487–520. doi: 10.1146/annurev.iy.12.040194.002415. [DOI] [PubMed] [Google Scholar]
  26. Rippe K., Guthold M., von Hippel P. H., Bustamante C. Transcriptional activation via DNA-looping: visualization of intermediates in the activation pathway of E. coli RNA polymerase x sigma 54 holoenzyme by scanning force microscopy. J Mol Biol. 1997 Jul 11;270(2):125–138. doi: 10.1006/jmbi.1997.1079. [DOI] [PubMed] [Google Scholar]
  27. Ryter J. M., Schultz S. C. Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J. 1998 Dec 15;17(24):7505–7513. doi: 10.1093/emboj/17.24.7505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sanford D. G., Kotkow K. J., Stollar B. D. Immunochemical detection of multiple conformations within a 36 base pair oligonucleotide. Nucleic Acids Res. 1988 Nov 25;16(22):10643–10655. doi: 10.1093/nar/16.22.10643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schönborn J., Oberstrass J., Breyel E., Tittgen J., Schumacher J., Lukacs N. Monoclonal antibodies to double-stranded RNA as probes of RNA structure in crude nucleic acid extracts. Nucleic Acids Res. 1991 Jun 11;19(11):2993–3000. doi: 10.1093/nar/19.11.2993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shlomchik M., Mascelli M., Shan H., Radic M. Z., Pisetsky D., Marshak-Rothstein A., Weigert M. Anti-DNA antibodies from autoimmune mice arise by clonal expansion and somatic mutation. J Exp Med. 1990 Jan 1;171(1):265–292. doi: 10.1084/jem.171.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. St Johnston D., Brown N. H., Gall J. G., Jantsch M. A conserved double-stranded RNA-binding domain. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10979–10983. doi: 10.1073/pnas.89.22.10979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stollar B. D. Antibodies to DNA. CRC Crit Rev Biochem. 1986;20(1):1–36. doi: 10.3109/10409238609115899. [DOI] [PubMed] [Google Scholar]
  33. Stollar B. D. Immunochemical analyses of nucleic acids. Prog Nucleic Acid Res Mol Biol. 1992;42:39–77. doi: 10.1016/s0079-6603(08)60573-5. [DOI] [PubMed] [Google Scholar]
  34. Theissen G., Richter A., Lukacs N. Degree of biotinylation in nucleic acids estimated by a gel retardation assay. Anal Biochem. 1989 May 15;179(1):98–105. doi: 10.1016/0003-2697(89)90207-8. [DOI] [PubMed] [Google Scholar]
  35. Tinoco I., Jr, Davis P. W., Hardin C. C., Puglisi J. D., Walker G. T., Wyatt J. RNA structure from A to Z. Cold Spring Harb Symp Quant Biol. 1987;52:135–146. doi: 10.1101/sqb.1987.052.01.018. [DOI] [PubMed] [Google Scholar]
  36. Wang Y. H., Howard M. T., Griffith J. D. Phased adenine tracts in double-stranded RNA do not induce sequence-directed bending. Biochemistry. 1991 Jun 4;30(22):5443–5449. doi: 10.1021/bi00236a017. [DOI] [PubMed] [Google Scholar]
  37. Zouali M. The structure of human lupus anti-DNA antibodies. Methods. 1997 Jan;11(1):27–35. doi: 10.1006/meth.1996.0384. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES