Abstract
Three classes of RNA, represented by atpB and petD mRNAs, Arg and Glu tRNAs, and 5S rRNA, were found to exist in polyadenylated form in Chlamydomonas reinhardtii chloroplasts. Sequence analysis of cDNA clones derived from reverse transcriptase-polymerase chain reaction protocols used to select polyadenylated RNAs revealed that, at least for the mRNAs and tRNAs, there are three apparent types of polyadenylation. In the first case, the poly(A) tail is added at or near the mature 3' end, even when this follows a strong secondary structure. In the second case, the tail is added to pre-mRNA or pre-tRNA, suggesting a possible competition between polyadenylation and RNA-processing pathways. Finally, in all cases, the poly(A) tail can be added internally, possibly as a part of an RNA-decay pathway. The tails found in Chlamydomonas chloroplasts differ from those of spinach chloroplasts in adenine content, being nearly homopolymeric (>98% adenine) versus 70% in spinach, and are similar in length to those of Escherichia coli, being mostly between 20 and 50 nt. In vitro assays using a Chlamydomonas chloroplast protein extract showed that a 3' end A25 tail was sufficient to stimulate rapid degradation of atpB RNA in vitro, with a lesser effect for petD, and only minor effects on trnE. We therefore propose that polyadenylation contributes to mRNA degradation in Chlamydomonas chloroplasts, but that its effect may vary.
Full Text
The Full Text of this article is available as a PDF (358.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amitsur M., Morad I., Kaufmann G. In vitro reconstitution of anticodon nuclease from components encoded by phage T4 and Escherichia coli CTr5X. EMBO J. 1989 Aug;8(8):2411–2415. doi: 10.1002/j.1460-2075.1989.tb08371.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bessarab D. A., Kaberdin V. R., Wei C. L., Liou G. G., Lin-Chao S. RNA components of Escherichia coli degradosome: evidence for rRNA decay. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3157–3161. doi: 10.1073/pnas.95.6.3157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blum E., Carpousis A. J., Higgins C. F. Polyadenylation promotes degradation of 3'-structured RNA by the Escherichia coli mRNA degradosome in vitro. J Biol Chem. 1999 Feb 12;274(7):4009–4016. doi: 10.1074/jbc.274.7.4009. [DOI] [PubMed] [Google Scholar]
- Braun F., Le Derout J., Régnier P. Ribosomes inhibit an RNase E cleavage which induces the decay of the rpsO mRNA of Escherichia coli. EMBO J. 1998 Aug 17;17(16):4790–4797. doi: 10.1093/emboj/17.16.4790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cao G. J., Sarkar N. Identification of the gene for an Escherichia coli poly(A) polymerase. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10380–10384. doi: 10.1073/pnas.89.21.10380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deng X. W., Gruissem W. Control of plastid gene expression during development: the limited role of transcriptional regulation. Cell. 1987 May 8;49(3):379–387. doi: 10.1016/0092-8674(87)90290-x. [DOI] [PubMed] [Google Scholar]
- Drager R. G., Girard-Bascou J., Choquet Y., Kindle K. L., Stern D. B. In vivo evidence for 5'-->3' exoribonuclease degradation of an unstable chloroplast mRNA. Plant J. 1998 Jan;13(1):85–96. doi: 10.1046/j.1365-313x.1998.00016.x. [DOI] [PubMed] [Google Scholar]
- Drager R. G., Higgs D. C., Kindle K. L., Stern D. B. 5' to 3' exoribonucleolytic activity is a normal component of chloroplast mRNA decay pathways. Plant J. 1999 Sep;19(5):521–531. doi: 10.1046/j.1365-313x.1999.00546.x. [DOI] [PubMed] [Google Scholar]
- Drager R. G., Zeidler M., Simpson C. L., Stern D. B. A chloroplast transcript lacking the 3' inverted repeat is degraded by 3'-->5' exoribonuclease activity. RNA. 1996 Jul;2(7):652–663. [PMC free article] [PubMed] [Google Scholar]
- Gagliardi D., Leaver C. J. Polyadenylation accelerates the degradation of the mitochondrial mRNA associated with cytoplasmic male sterility in sunflower. EMBO J. 1999 Jul 1;18(13):3757–3766. doi: 10.1093/emboj/18.13.3757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hajnsdorf E., Braun F., Haugel-Nielsen J., Le Derout J., Régnier P. Multiple degradation pathways of the rpsO mRNA of Escherichia coli. RNase E interacts with the 5' and 3' extremities of the primary transcript. Biochimie. 1996;78(6):416–424. doi: 10.1016/0300-9084(96)84748-1. [DOI] [PubMed] [Google Scholar]
- Hajnsdorf E., Braun F., Haugel-Nielsen J., Régnier P. Polyadenylylation destabilizes the rpsO mRNA of Escherichia coli. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3973–3977. doi: 10.1073/pnas.92.9.3973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hajnsdorf E., Régnier P. E. coli RpsO mRNA decay: RNase E processing at the beginning of the coding sequence stimulates poly(A)-dependent degradation of the mRNA. J Mol Biol. 1999 Mar 5;286(4):1033–1043. doi: 10.1006/jmbi.1999.2547. [DOI] [PubMed] [Google Scholar]
- Harada F., Dahlberg J. E. Specific cleavage of tRNA by nuclease S1. Nucleic Acids Res. 1975 Jun;2(6):865–871. doi: 10.1093/nar/2.6.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris E. H., Boynton J. E., Gillham N. W. Chloroplast ribosomes and protein synthesis. Microbiol Rev. 1994 Dec;58(4):700–754. doi: 10.1128/mr.58.4.700-754.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haugel-Nielsen J., Hajnsdorf E., Regnier P. The rpsO mRNA of Escherichia coli is polyadenylated at multiple sites resulting from endonucleolytic processing and exonucleolytic degradation. EMBO J. 1996 Jun 17;15(12):3144–3152. [PMC free article] [PubMed] [Google Scholar]
- Hayes R., Kudla J., Gruissem W. Degrading chloroplast mRNA: the role of polyadenylation. Trends Biochem Sci. 1999 May;24(5):199–202. doi: 10.1016/s0968-0004(99)01388-2. [DOI] [PubMed] [Google Scholar]
- He L., Söderbom F., Wagner E. G., Binnie U., Binns N., Masters M. PcnB is required for the rapid degradation of RNAI, the antisense RNA that controls the copy number of ColE1-related plasmids. Mol Microbiol. 1993 Sep;9(6):1131–1142. doi: 10.1111/j.1365-2958.1993.tb01243.x. [DOI] [PubMed] [Google Scholar]
- Kim M., Christopher D. A., Mullet J. E. Direct evidence for selective modulation of psbA, rpoA, rbcL and 16S RNA stability during barley chloroplast development. Plant Mol Biol. 1993 Jun;22(3):447–463. doi: 10.1007/BF00015975. [DOI] [PubMed] [Google Scholar]
- Klaff P., Gruissem W. Changes in Chloroplast mRNA Stability during Leaf Development. Plant Cell. 1991 May;3(5):517–529. doi: 10.1105/tpc.3.5.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kudla J., Hayes R., Gruissem W. Polyadenylation accelerates degradation of chloroplast mRNA. EMBO J. 1996 Dec 16;15(24):7137–7146. [PMC free article] [PubMed] [Google Scholar]
- Lee H., Bingham S. E., Webber A. N. Function of 3' non-coding sequences and stop codon usage in expression of the chloroplast psaB gene in Chlamydomonas reinhardtii. Plant Mol Biol. 1996 May;31(2):337–354. doi: 10.1007/BF00021794. [DOI] [PubMed] [Google Scholar]
- Levy H., Kindle K. L., Stern D. B. A Nuclear Mutation That Affects the 3[prime] Processing of Several mRNAs in Chlamydomonas Chloroplasts. Plant Cell. 1997 May;9(5):825–836. doi: 10.1105/tpc.9.5.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Li Q. S., Gupta J. D., Hunt A. G. A plant poly(A) polymerase requires a novel RNA-binding protein for activity. J Biol Chem. 1996 Aug 16;271(33):19831–19835. doi: 10.1074/jbc.271.33.19831. [DOI] [PubMed] [Google Scholar]
- Li Q. S., Gupta J. D., Hunt A. G. Polynucleotide phosphorylase is a component of a novel plant poly(A) polymerase. J Biol Chem. 1998 Jul 10;273(28):17539–17543. doi: 10.1074/jbc.273.28.17539. [DOI] [PubMed] [Google Scholar]
- Li Z., Pandit S., Deutscher M. P. Polyadenylation of stable RNA precursors in vivo. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12158–12162. doi: 10.1073/pnas.95.21.12158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisitsky I., Klaff P., Schuster G. Addition of destabilizing poly (A)-rich sequences to endonuclease cleavage sites during the degradation of chloroplast mRNA. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13398–13403. doi: 10.1073/pnas.93.23.13398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lisitsky I., Kotler A., Schuster G. The mechanism of preferential degradation of polyadenylated RNA in the chloroplast. The exoribonuclease 100RNP/polynucleotide phosphorylase displays high binding affinity for poly(A) sequence. J Biol Chem. 1997 Jul 11;272(28):17648–17653. doi: 10.1074/jbc.272.28.17648. [DOI] [PubMed] [Google Scholar]
- Lupold D. S., Caoile A. G., Stern D. B. Polyadenylation occurs at multiple sites in maize mitochondrial cox2 mRNA and is independent of editing status. Plant Cell. 1999 Aug;11(8):1565–1578. doi: 10.1105/tpc.11.8.1565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meidler R., Morad I., Amitsur M., Inokuchi H., Kaufmann G. Detection of anticodon nuclease residues involved in tRNALys cleavage specificity. J Mol Biol. 1999 Apr 2;287(3):499–510. doi: 10.1006/jmbi.1999.2634. [DOI] [PubMed] [Google Scholar]
- Nickelsen J., Fleischmann M., Boudreau E., Rahire M., Rochaix J. D. Identification of cis-acting RNA leader elements required for chloroplast psbD gene expression in Chlamydomonas. Plant Cell. 1999 May;11(5):957–970. doi: 10.1105/tpc.11.5.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Hara E. B., Chekanova J. A., Ingle C. A., Kushner Z. R., Peters E., Kushner S. R. Polyadenylylation helps regulate mRNA decay in Escherichia coli. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1807–1811. doi: 10.1073/pnas.92.6.1807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ojala D., Montoya J., Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981 Apr 9;290(5806):470–474. doi: 10.1038/290470a0. [DOI] [PubMed] [Google Scholar]
- Przykorska A., el Adlouni C., Keith G., Szarkowski J. W., Dirheimer G. Structural specificity of Rn nuclease I as probed on yeast tRNA(Phe) and tRNA(Asp). Nucleic Acids Res. 1992 Feb 25;20(4):659–663. doi: 10.1093/nar/20.4.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raynal L. C., Carpousis A. J. Poly(A) polymerase I of Escherichia coli: characterization of the catalytic domain, an RNA binding site and regions for the interaction with proteins involved in mRNA degradation. Mol Microbiol. 1999 May;32(4):765–775. doi: 10.1046/j.1365-2958.1999.01394.x. [DOI] [PubMed] [Google Scholar]
- Sakamoto W., Chen X., Kindle K. L., Stern D. B. Function of the Chlamydomonas reinhardtii petd 5' untranslated region in regulating the accumulation of subunit IV of the cytochrome b6/f complex. Plant J. 1994 Oct;6(4):503–512. doi: 10.1046/j.1365-313x.1994.6040503.x. [DOI] [PubMed] [Google Scholar]
- Sakamoto W., Sturm N. R., Kindle K. L., Stern D. B. petD mRNA maturation in Chlamydomonas reinhardtii chloroplasts: role of 5' endonucleolytic processing. Mol Cell Biol. 1994 Sep;14(9):6180–6186. doi: 10.1128/mcb.14.9.6180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salvador M. L., Klein U., Bogorad L. Light-regulated and endogenous fluctuations of chloroplast transcript levels in Chlamydomonas. Regulation by transcription and RNA degradation. Plant J. 1993 Feb;3(2):213–219. doi: 10.1046/j.1365-313x.1993.t01-13-00999.x. [DOI] [PubMed] [Google Scholar]
- Sarkar N. Polyadenylation of mRNA in prokaryotes. Annu Rev Biochem. 1997;66:173–197. doi: 10.1146/annurev.biochem.66.1.173. [DOI] [PubMed] [Google Scholar]
- Schuster G., Lisitsky I., Klaff P. Polyadenylation and degradation of mRNA in the chloroplast. Plant Physiol. 1999 Aug;120(4):937–944. doi: 10.1104/pp.120.4.937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern D. B., Gruissem W. Control of plastid gene expression: 3' inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell. 1987 Dec 24;51(6):1145–1157. doi: 10.1016/0092-8674(87)90600-3. [DOI] [PubMed] [Google Scholar]
- Stern D. B., Kindle K. L. 3'end maturation of the Chlamydomonas reinhardtii chloroplast atpB mRNA is a two-step process. Mol Cell Biol. 1993 Apr;13(4):2277–2285. doi: 10.1128/mcb.13.4.2277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern D. B., Radwanski E. R., Kindle K. L. A 3' stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell. 1991 Mar;3(3):285–297. doi: 10.1105/tpc.3.3.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sturm N. R., Kuras R., Büschlen S., Sakamoto W., Kindle K. L., Stern D. B., Wollman F. A. The petD gene is transcribed by functionally redundant promoters in Chlamydomonas reinhardtii chloroplasts. Mol Cell Biol. 1994 Sep;14(9):6171–6179. doi: 10.1128/mcb.14.9.6171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xu F., Cohen S. N. RNA degradation in Escherichia coli regulated by 3' adenylation and 5' phosphorylation. Nature. 1995 Mar 9;374(6518):180–183. doi: 10.1038/374180a0. [DOI] [PubMed] [Google Scholar]
- Xu F., Lin-Chao S., Cohen S. N. The Escherichia coli pcnB gene promotes adenylylation of antisense RNAI of ColE1-type plasmids in vivo and degradation of RNAI decay intermediates. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6756–6760. doi: 10.1073/pnas.90.14.6756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang J., Stern D. B. The spinach chloroplast endoribonuclease CSP41 cleaves the 3'-untranslated region of petD mRNA primarily within its terminal stem-loop structure. J Biol Chem. 1997 May 9;272(19):12874–12880. doi: 10.1074/jbc.272.19.12874. [DOI] [PubMed] [Google Scholar]