Skip to main content
RNA logoLink to RNA
. 2000 Apr;6(4):608–615. doi: 10.1017/s1355838200992495

A test of the model to predict unusually stable RNA hairpin loop stability.

T Dale 1, R Smith 1, M J Serra 1
PMCID: PMC1369941  PMID: 10786851

Abstract

To investigate the accuracy of a model [Giese et al., 1998, Biochemistry37:1094-1100 and Mathews et al., 1999, JMol Biol 288:911-940] that predicts the stability of RNA hairpin loops, optical melting studies were conducted on sets of hairpins previously determined to have unusually stable thermodynamic parameters. Included were the tetraloops GNRA and UNCG (where N is any nucleotide and R is a purine), hexaloops with UU first mismatches, and the hairpin loop of the iron responsive element, CAGUGC. The experimental values for the GNRA loops are in excellent agreement (deltaG degrees 37 within 0.2 kcal/mol and melting temperature (TM) within 4 degrees C) with the values predicted by the model. When the UNCG hairpin loops are treated as tetraloops, and a bonus of 0.8 kcal/mol included in the prediction to account for the extra stable first mismatch (UG), the measured and predicted values are also in good agreement (deltaG degrees 37 within 0.7 kcal/mol and TM within 3 degrees C). Six hairpins with unusually stable UU first mismatches also gave good agreement with the predictions (deltaG degrees 37 within 0.5 kcal/mol and TM within 8 degrees C), except for hairpins closed by wobble base pairs. For these hairpins, exclusion of the additional stabilization term for UU first mismatches improved the prediction (AG degrees 37 within 0.1 kcal/mol and TM within 3 degrees C). Hairpins with the iron-responsive element loop were not predicted well by the model, as measured deltaG degrees 37 values were at least 1 kcal/mol greater than predicted.

Full Text

The Full Text of this article is available as a PDF (142.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antao V. P., Lai S. Y., Tinoco I., Jr A thermodynamic study of unusually stable RNA and DNA hairpins. Nucleic Acids Res. 1991 Nov 11;19(21):5901–5905. doi: 10.1093/nar/19.21.5901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antao V. P., Tinoco I., Jr Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. Nucleic Acids Res. 1992 Feb 25;20(4):819–824. doi: 10.1093/nar/20.4.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
  4. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P., Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987 Nov 25;15(22):9109–9128. doi: 10.1093/nar/15.22.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Endo Y., Glück A., Wool I. G. Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. J Mol Biol. 1991 Sep 5;221(1):193–207. doi: 10.1016/0022-2836(91)80214-f. [DOI] [PubMed] [Google Scholar]
  6. Ferré-D'Amaré A. R., Zhou K., Doudna J. A. Crystal structure of a hepatitis delta virus ribozyme. Nature. 1998 Oct 8;395(6702):567–574. doi: 10.1038/26912. [DOI] [PubMed] [Google Scholar]
  7. Giese M. R., Betschart K., Dale T., Riley C. K., Rowan C., Sprouse K. J., Serra M. J. Stability of RNA hairpins closed by wobble base pairs. Biochemistry. 1998 Jan 27;37(4):1094–1100. doi: 10.1021/bi972050v. [DOI] [PubMed] [Google Scholar]
  8. Giese M. R., Betschart K., Dale T., Riley C. K., Rowan C., Sprouse K. J., Serra M. J. Stability of RNA hairpins closed by wobble base pairs. Biochemistry. 1998 Jan 27;37(4):1094–1100. doi: 10.1021/bi972050v. [DOI] [PubMed] [Google Scholar]
  9. Glück A., Endo Y., Wool I. G. Ribosomal RNA identity elements for ricin A-chain recognition and catalysis. Analysis with tetraloop mutants. J Mol Biol. 1992 Jul 20;226(2):411–424. doi: 10.1016/0022-2836(92)90956-k. [DOI] [PubMed] [Google Scholar]
  10. Golden B. L., Gooding A. R., Podell E. R., Cech T. R. A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science. 1998 Oct 9;282(5387):259–264. doi: 10.1126/science.282.5387.259. [DOI] [PubMed] [Google Scholar]
  11. Groebe D. R., Uhlenbeck O. C. Thermal stability of RNA hairpins containing a four-membered loop and a bulge nucleotide. Biochemistry. 1989 Jan 24;28(2):742–747. doi: 10.1021/bi00428a049. [DOI] [PubMed] [Google Scholar]
  12. Gutell R. R. Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. Nucleic Acids Res. 1994 Sep;22(17):3502–3507. doi: 10.1093/nar/22.17.3502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gutell R. R., Gray M. W., Schnare M. N. A compilation of large subunit (23S and 23S-like) ribosomal RNA structures: 1993. Nucleic Acids Res. 1993 Jul 1;21(13):3055–3074. doi: 10.1093/nar/21.13.3055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Herschlag D., Cech T. R. DNA cleavage catalysed by the ribozyme from Tetrahymena. Nature. 1990 Mar 29;344(6265):405–409. doi: 10.1038/344405a0. [DOI] [PubMed] [Google Scholar]
  15. Heus H. A., Pardi A. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science. 1991 Jul 12;253(5016):191–194. doi: 10.1126/science.1712983. [DOI] [PubMed] [Google Scholar]
  16. Jaeger J. A., Tinoco I., Jr An NMR study of the HIV-1 TAR element hairpin. Biochemistry. 1993 Nov 23;32(46):12522–12530. doi: 10.1021/bi00097a032. [DOI] [PubMed] [Google Scholar]
  17. Jaeger L., Michel F., Westhof E. Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. J Mol Biol. 1994 Mar 11;236(5):1271–1276. doi: 10.1016/0022-2836(94)90055-8. [DOI] [PubMed] [Google Scholar]
  18. Jucker F. M., Pardi A. GNRA tetraloops make a U-turn. RNA. 1995 Apr;1(2):219–222. [PMC free article] [PubMed] [Google Scholar]
  19. Kieft J. S., Tinoco I., Jr Solution structure of a metal-binding site in the major groove of RNA complexed with cobalt (III) hexammine. Structure. 1997 May 15;5(5):713–721. doi: 10.1016/s0969-2126(97)00225-6. [DOI] [PubMed] [Google Scholar]
  20. Kolk M. H., van der Graaf M., Wijmenga S. S., Pleij C. W., Heus H. A., Hilbers C. W. NMR structure of a classical pseudoknot: interplay of single- and double-stranded RNA. Science. 1998 Apr 17;280(5362):434–438. doi: 10.1126/science.280.5362.434. [DOI] [PubMed] [Google Scholar]
  21. Laing L. G., Hall K. B. A model of the iron responsive element RNA hairpin loop structure determined from NMR and thermodynamic data. Biochemistry. 1996 Oct 22;35(42):13586–13596. doi: 10.1021/bi961310q. [DOI] [PubMed] [Google Scholar]
  22. Mathews D. H., Sabina J., Zuker M., Turner D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999 May 21;288(5):911–940. doi: 10.1006/jmbi.1999.2700. [DOI] [PubMed] [Google Scholar]
  23. McDowell J. A., Turner D. H. Investigation of the structural basis for thermodynamic stabilities of tandem GU mismatches: solution structure of (rGAGGUCUC)2 by two-dimensional NMR and simulated annealing. Biochemistry. 1996 Nov 12;35(45):14077–14089. doi: 10.1021/bi9615710. [DOI] [PubMed] [Google Scholar]
  24. Murphy F. L., Cech T. R. GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. J Mol Biol. 1994 Feb 11;236(1):49–63. doi: 10.1006/jmbi.1994.1117. [DOI] [PubMed] [Google Scholar]
  25. Parker R. Genetic methods for identification and characterization of RNA-RNA and RNA-protein interactions. Methods Enzymol. 1989;180:510–517. doi: 10.1016/0076-6879(89)80120-x. [DOI] [PubMed] [Google Scholar]
  26. Pley H. W., Flaherty K. M., McKay D. B. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994 Nov 3;372(6501):68–74. doi: 10.1038/372068a0. [DOI] [PubMed] [Google Scholar]
  27. SantaLucia J., Jr, Kierzek R., Turner D. H. Context dependence of hydrogen bond free energy revealed by substitutions in an RNA hairpin. Science. 1992 Apr 10;256(5054):217–219. doi: 10.1126/science.1373521. [DOI] [PubMed] [Google Scholar]
  28. Scott W. G., Finch J. T., Klug A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell. 1995 Jun 30;81(7):991–1002. doi: 10.1016/s0092-8674(05)80004-2. [DOI] [PubMed] [Google Scholar]
  29. Serra M. J., Axenson T. J., Turner D. H. A model for the stabilities of RNA hairpins based on a study of the sequence dependence of stability for hairpins of six nucleotides. Biochemistry. 1994 Nov 29;33(47):14289–14296. doi: 10.1021/bi00251a042. [DOI] [PubMed] [Google Scholar]
  30. Serra M. J., Barnes T. W., Betschart K., Gutierrez M. J., Sprouse K. J., Riley C. K., Stewart L., Temel R. E. Improved parameters for the prediction of RNA hairpin stability. Biochemistry. 1997 Apr 22;36(16):4844–4851. doi: 10.1021/bi962608j. [DOI] [PubMed] [Google Scholar]
  31. Serra M. J., Lyttle M. H., Axenson T. J., Schadt C. A., Turner D. H. RNA hairpin loop stability depends on closing base pair. Nucleic Acids Res. 1993 Aug 11;21(16):3845–3849. doi: 10.1093/nar/21.16.3845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Tuerk C., Gauss P., Thermes C., Groebe D. R., Gayle M., Guild N., Stormo G., d'Aubenton-Carafa Y., Uhlenbeck O. C., Tinoco I., Jr CUUCGG hairpins: extraordinarily stable RNA secondary structures associated with various biochemical processes. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1364–1368. doi: 10.1073/pnas.85.5.1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Turner D. H., Sugimoto N., Freier S. M. RNA structure prediction. Annu Rev Biophys Biophys Chem. 1988;17:167–192. doi: 10.1146/annurev.bb.17.060188.001123. [DOI] [PubMed] [Google Scholar]
  34. Uhlenbeck O. C. Tetraloops and RNA folding. Nature. 1990 Aug 16;346(6285):613–614. doi: 10.1038/346613a0. [DOI] [PubMed] [Google Scholar]
  35. Westhof E., Michel F. Ribozyme architectural diversity made visible. Science. 1998 Oct 9;282(5387):251–252. doi: 10.1126/science.282.5387.251. [DOI] [PubMed] [Google Scholar]
  36. Woese C. R., Winker S., Gutell R. R. Architecture of ribosomal RNA: constraints on the sequence of "tetra-loops". Proc Natl Acad Sci U S A. 1990 Nov;87(21):8467–8471. doi: 10.1073/pnas.87.21.8467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Xia T., SantaLucia J., Jr, Burkard M. E., Kierzek R., Schroeder S. J., Jiao X., Cox C., Turner D. H. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry. 1998 Oct 20;37(42):14719–14735. doi: 10.1021/bi9809425. [DOI] [PubMed] [Google Scholar]
  38. Zaug A. J., Cech T. R. The intervening sequence RNA of Tetrahymena is an enzyme. Science. 1986 Jan 31;231(4737):470–475. doi: 10.1126/science.3941911. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES