Skip to main content
RNA logoLink to RNA
. 2000 Apr;6(4):628–637. doi: 10.1017/s1355838200990964

Intracellular ribozyme-catalyzed trans-cleavage of RNA monitored by fluorescence resonance energy transfer.

D Vitiello 1, D B Pecchia 1, J M Burke 1
PMCID: PMC1369943  PMID: 10786853

Abstract

Small catalytic RNAs like the hairpin ribozyme are proving to be useful intracellular tools; however, most attempts to demonstrate trans-cleavage of RNA by ribozymes in cells have been frustrated by rapid cellular degradation of the cleavage products. Here, we describe a fluorescence resonance energy transfer (FRET) assay that directly monitors cleavage of target RNA in tissue-culture cells. An oligoribonucleotide substrate was modified to inhibit cellular ribonuclease degradation without interfering with ribozyme cleavage, and donor (fluorescein) and acceptor (tetramethylrhodamine) fluorophores were introduced at positions flanking the cleavage site. In simple buffers, the intact substrate produces a strong FRET signal that is lost upon cleavage, resulting in a red-to-green shift in dominant fluorescence emission. Hairpin ribozyme and fluorescent substrate were microinjected into murine fibroblasts under conditions in which substrate cleavage can occur only inside the cell. A strong FRET signal was observed by fluorescence microscopy when substrate was injected, but rapid decay of the FRET signal occurred when an active, cognate ribozyme was introduced with the substrate. No acceleration in cleavage rates was observed in control experiments utilizing a noncleavable substrate, inactive ribozyme, or an active ribozyme with altered substrate specificity. Subsequently, the fluorescent substrates were injected into clonal cell lines that expressed cognate or noncognate ribozymes. A decrease in FRET signal was observed only when substrate was microinjected into cells expressing its cognate ribozyme. These results demonstrate trans-cleavage of RNA within mammalian cells, and provide an experimental basis for quantitative analysis of ribozyme activity and specificity within the cell.

Full Text

The Full Text of this article is available as a PDF (572.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck J., Nassal M. Efficient hammerhead ribozyme-mediated cleavage of the structured hepatitis B virus encapsidation signal in vitro and in cell extracts, but not in intact cells. Nucleic Acids Res. 1995 Dec 25;23(24):4954–4962. doi: 10.1093/nar/23.24.4954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beigelman L., McSwiggen J. A., Draper K. G., Gonzalez C., Jensen K., Karpeisky A. M., Modak A. S., Matulic-Adamic J., DiRenzo A. B., Haeberli P. Chemical modification of hammerhead ribozymes. Catalytic activity and nuclease resistance. J Biol Chem. 1995 Oct 27;270(43):25702–25708. doi: 10.1074/jbc.270.43.25702. [DOI] [PubMed] [Google Scholar]
  3. Bertrand E., Pictet R., Grange T. Can hammerhead ribozymes be efficient tools to inactivate gene function? Nucleic Acids Res. 1994 Feb 11;22(3):293–300. doi: 10.1093/nar/22.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berzal-Herranz A., Joseph S., Chowrira B. M., Butcher S. E., Burke J. M. Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO J. 1993 Jun;12(6):2567–2573. doi: 10.1002/j.1460-2075.1993.tb05912.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Birikh K. R., Heaton P. A., Eckstein F. The structure, function and application of the hammerhead ribozyme. Eur J Biochem. 1997 Apr 1;245(1):1–16. doi: 10.1111/j.1432-1033.1997.t01-3-00001.x. [DOI] [PubMed] [Google Scholar]
  6. Borneman J., Tritz R., Hampel A., Altschuler M. Detection of cleavage products from an in vivo transcribed cis hairpin ribozyme in turnips using the CaMV plant virus. Gene. 1995 Jul 4;159(2):137–142. doi: 10.1016/0378-1119(95)00173-4. [DOI] [PubMed] [Google Scholar]
  7. Burke J. M. Hairpin ribozyme: current status and future prospects. Biochem Soc Trans. 1996 Aug;24(3):608–615. doi: 10.1042/bst0240608. [DOI] [PubMed] [Google Scholar]
  8. Chowrira B. M., Berzal-Herranz A., Burke J. M. Ionic requirements for RNA binding, cleavage, and ligation by the hairpin ribozyme. Biochemistry. 1993 Feb 2;32(4):1088–1095. doi: 10.1021/bi00055a014. [DOI] [PubMed] [Google Scholar]
  9. Chowrira B. M., Berzal-Herranz A., Burke J. M. Novel guanosine requirement for catalysis by the hairpin ribozyme. Nature. 1991 Nov 28;354(6351):320–322. doi: 10.1038/354320a0. [DOI] [PubMed] [Google Scholar]
  10. Chowrira B. M., Pavco P. A., McSwiggen J. A. In vitro and in vivo comparison of hammerhead, hairpin, and hepatitis delta virus self-processing ribozyme cassettes. J Biol Chem. 1994 Oct 14;269(41):25856–25864. [PubMed] [Google Scholar]
  11. Christoffersen R. E., Marr J. J. Ribozymes as human therapeutic agents. J Med Chem. 1995 Jun 9;38(12):2023–2037. doi: 10.1021/jm00012a001. [DOI] [PubMed] [Google Scholar]
  12. Clegg R. M. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol. 1992;211:353–388. doi: 10.1016/0076-6879(92)11020-j. [DOI] [PubMed] [Google Scholar]
  13. Coetzee T., Herschlag D., Belfort M. Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones. Genes Dev. 1994 Jul 1;8(13):1575–1588. doi: 10.1101/gad.8.13.1575. [DOI] [PubMed] [Google Scholar]
  14. Crisell P., Thompson S., James W. Inhibition of HIV-1 replication by ribozymes that show poor activity in vitro. Nucleic Acids Res. 1993 Nov 11;21(22):5251–5255. doi: 10.1093/nar/21.22.5251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Domi A., Beaud G., Favre A. Transcripts containing a small anti-HIV hammerhead ribozyme that are active in the cell cytoplasm but inactive in vitro as free RNAs. Biochimie. 1996;78(7):654–662. doi: 10.1016/s0300-9084(96)80011-3. [DOI] [PubMed] [Google Scholar]
  16. Donahue C. P., Fedor M. J. Kinetics of hairpin ribozyme cleavage in yeast. RNA. 1997 Sep;3(9):961–973. [PMC free article] [PubMed] [Google Scholar]
  17. Earnshaw D. J., Gait M. J. Progress toward the structure and therapeutic use of the hairpin ribozyme. Antisense Nucleic Acid Drug Dev. 1997 Aug;7(4):403–411. doi: 10.1089/oli.1.1997.7.403. [DOI] [PubMed] [Google Scholar]
  18. Elroy-Stein O., Moss B. Cytoplasmic expression system based on constitutive synthesis of bacteriophage T7 RNA polymerase in mammalian cells. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6743–6747. doi: 10.1073/pnas.87.17.6743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Esteban J. A., Banerjee A. R., Burke J. M. Kinetic mechanism of the hairpin ribozyme. Identification and characterization of two nonexchangeable conformations. J Biol Chem. 1997 May 23;272(21):13629–13639. doi: 10.1074/jbc.272.21.13629. [DOI] [PubMed] [Google Scholar]
  20. Heidenreich O., Xu X., Nerenberg M. A hammerhead ribozyme cleaves its target RNA during RNA preparation. Antisense Nucleic Acid Drug Dev. 1996 Summer;6(2):141–144. doi: 10.1089/oli.1.1996.6.141. [DOI] [PubMed] [Google Scholar]
  21. Herschlag D., Khosla M., Tsuchihashi Z., Karpel R. L. An RNA chaperone activity of non-specific RNA binding proteins in hammerhead ribozyme catalysis. EMBO J. 1994 Jun 15;13(12):2913–2924. doi: 10.1002/j.1460-2075.1994.tb06586.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jeng K. S., Su P. Y., Lai M. M. Hepatitis delta antigens enhance the ribozyme activities of hepatitis delta virus RNA in vivo. J Virol. 1996 Jul;70(7):4205–4209. doi: 10.1128/jvi.70.7.4205-4209.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jones J. T., Lee S. W., Sullenger B. A. Tagging ribozyme reaction sites to follow trans-splicing in mammalian cells. Nat Med. 1996 Jun;2(6):643–648. doi: 10.1038/nm0696-643. [DOI] [PubMed] [Google Scholar]
  24. Jones J. T., Sullenger B. A. Evaluating and enhancing ribozyme reaction efficiency in mammalian cells. Nat Biotechnol. 1997 Sep;15(9):902–905. doi: 10.1038/nbt0997-902. [DOI] [PubMed] [Google Scholar]
  25. Köhler U., Ayre B. G., Goodman H. M., Haseloff J. Trans-splicing ribozymes for targeted gene delivery. J Mol Biol. 1999 Feb 5;285(5):1935–1950. doi: 10.1006/jmbi.1998.2447. [DOI] [PubMed] [Google Scholar]
  26. Lieber A., Strauss M. Selection of efficient cleavage sites in target RNAs by using a ribozyme expression library. Mol Cell Biol. 1995 Jan;15(1):540–551. doi: 10.1128/mcb.15.1.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Luzi E., Eckstein F., Barsacchi G. The newt ribozyme is part of a riboprotein complex. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9711–9716. doi: 10.1073/pnas.94.18.9711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Macdonald L. E., Zhou Y., McAllister W. T. Termination and slippage by bacteriophage T7 RNA polymerase. J Mol Biol. 1993 Aug 20;232(4):1030–1047. doi: 10.1006/jmbi.1993.1458. [DOI] [PubMed] [Google Scholar]
  29. Nedbal W., Sczakiel G. Hammerhead ribozyme activity in the presence of low molecular weight cellular extract. Antisense Nucleic Acid Drug Dev. 1997 Dec;7(6):585–589. doi: 10.1089/oli.1.1997.7.585. [DOI] [PubMed] [Google Scholar]
  30. Perkins T. A., Goodchild J. Using fluorescence resonance energy transfer to investigate hammerhead ribozyme kinetics. Methods Mol Biol. 1997;74:241–251. doi: 10.1385/0-89603-389-9:241. [DOI] [PubMed] [Google Scholar]
  31. Perkins T. A., Wolf D. E., Goodchild J. Fluorescence resonance energy transfer analysis of ribozyme kinetics reveals the mode of action of a facilitator oligonucleotide. Biochemistry. 1996 Dec 17;35(50):16370–16377. doi: 10.1021/bi961234r. [DOI] [PubMed] [Google Scholar]
  32. Rossi J. J. Therapeutic applications of catalytic antisense RNAs (ribozymes). Ciba Found Symp. 1997;209:195–206. doi: 10.1002/9780470515396.ch14. [DOI] [PubMed] [Google Scholar]
  33. Sargueil B., Pecchia D. B., Burke J. M. An improved version of the hairpin ribozyme functions as a ribonucleoprotein complex. Biochemistry. 1995 Jun 13;34(23):7739–7748. doi: 10.1021/bi00023a021. [DOI] [PubMed] [Google Scholar]
  34. Seyhan A. A., Amaral J., Burke J. M. Intracellular RNA cleavage by the hairpin ribozyme. Nucleic Acids Res. 1998 Aug 1;26(15):3494–3504. doi: 10.1093/nar/26.15.3494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sioud M., Jespersen L. Enhancement of hammerhead ribozyme catalysis by glyceraldehyde-3-phosphate dehydrogenase. J Mol Biol. 1996 Apr 12;257(4):775–789. doi: 10.1006/jmbi.1996.0201. [DOI] [PubMed] [Google Scholar]
  36. Sixou S., Szoka F. C., Jr, Green G. A., Giusti B., Zon G., Chin D. J. Intracellular oligonucleotide hybridization detected by fluorescence resonance energy transfer (FRET). Nucleic Acids Res. 1994 Feb 25;22(4):662–668. doi: 10.1093/nar/22.4.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Steinecke P., Steger G., Schreier P. H. A stable hammerhead structure is not required for endonucleolytic activity of a ribozyme in vivo. Gene. 1994 Nov 4;149(1):47–54. doi: 10.1016/0378-1119(94)90411-1. [DOI] [PubMed] [Google Scholar]
  38. Sullenger B. A., Cech T. R. Ribozyme-mediated repair of defective mRNA by targeted, trans-splicing. Nature. 1994 Oct 13;371(6498):619–622. doi: 10.1038/371619a0. [DOI] [PubMed] [Google Scholar]
  39. Sun L. Q., Warrilow D., Wang L., Witherington C., Macpherson J., Symonds G. Ribozyme-mediated suppression of Moloney murine leukemia virus and human immunodeficiency virus type I replication in permissive cell lines. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9715–9719. doi: 10.1073/pnas.91.21.9715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tsuchihashi Z., Khosla M., Herschlag D. Protein enhancement of hammerhead ribozyme catalysis. Science. 1993 Oct 1;262(5130):99–102. doi: 10.1126/science.7692597. [DOI] [PubMed] [Google Scholar]
  41. Uchiyama H., Hirano K., Kashiwasake-Jibu M., Taira K. Detection of undegraded oligonucleotides in vivo by fluorescence resonance energy transfer. Nuclease activities in living sea urchin eggs. J Biol Chem. 1996 Jan 5;271(1):380–384. doi: 10.1074/jbc.271.1.380. [DOI] [PubMed] [Google Scholar]
  42. Walter N. G., Burke J. M. Real-time monitoring of hairpin ribozyme kinetics through base-specific quenching of fluorescein-labeled substrates. RNA. 1997 Apr;3(4):392–404. [PMC free article] [PubMed] [Google Scholar]
  43. Walter N. G., Hampel K. J., Brown K. M., Burke J. M. Tertiary structure formation in the hairpin ribozyme monitored by fluorescence resonance energy transfer. EMBO J. 1998 Apr 15;17(8):2378–2391. doi: 10.1093/emboj/17.8.2378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Weeks K. M., Cech T. R. Assembly of a ribonucleoprotein catalyst by tertiary structure capture. Science. 1996 Jan 19;271(5247):345–348. doi: 10.1126/science.271.5247.345. [DOI] [PubMed] [Google Scholar]
  45. Welch P. J., Tritz R., Yei S., Leavitt M., Yu M., Barber J. A potential therapeutic application of hairpin ribozymes: in vitro and in vivo studies of gene therapy for hepatitis C virus infection. Gene Ther. 1996 Nov;3(11):994–1001. [PubMed] [Google Scholar]
  46. Wincott F., DiRenzo A., Shaffer C., Grimm S., Tracz D., Workman C., Sweedler D., Gonzalez C., Scaringe S., Usman N. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucleic Acids Res. 1995 Jul 25;23(14):2677–2684. doi: 10.1093/nar/23.14.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yu Q., Pecchia D. B., Kingsley S. L., Heckman J. E., Burke J. M. Cleavage of highly structured viral RNA molecules by combinatorial libraries of hairpin ribozymes. The most effective ribozymes are not predicted by substrate selection rules. J Biol Chem. 1998 Sep 4;273(36):23524–23533. doi: 10.1074/jbc.273.36.23524. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES