Skip to main content
RNA logoLink to RNA
. 2000 May;6(5):659–667. doi: 10.1017/s1355838200000169

Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer.

G R Zimmermann 1, C L Wick 1, T P Shields 1, R D Jenison 1, A Pardi 1
PMCID: PMC1369946  PMID: 10836787

Abstract

An RNA aptamer containing a 15-nt binding site shows high affinity and specificity for the bronchodilator theophylline. A variety of base modifications or 2' deoxyribose substitutions in binding-site residues were tested for theophyllinebinding affinity and the results were compared with the previously determined three-dimensional structure of the RNA-theophylline complex. The RNA-theophylline complex contains a U6-A28-U23 base triple, and disruption of this A28-U23 Hoogsteen-pair by a 7-deaza, 2'-deoxy A28 mutant reduces theophylline binding >45-fold at 25 degrees C. U24 is part of a U-turn in the core of the RNA, and disruption of this U-turn motif by a 2'-deoxy substitution of U24 also reduces theophylline binding by >90-fold. Several mutations outside the "conserved core" of the RNA aptamer showed reduced binding affinity, and these effects could be rationalized by comparison with the three-dimensional structure of the complex. Divalent ions are absolutely required for high-affinity theophylline binding. High-affinity binding was observed with 5 mM Mg2+, Mn2+, or Co2+ ions, whereas little or no significant binding was observed for other divalent or lanthanide ions. A metal-binding site in the core of the complex was revealed by paramagnetic Mn2+-induced broadening of specific RNA resonances in the NMR spectra. When caffeine is added to the aptamer in tenfold excess, the NMR spectra show no evidence for binding in the conserved core and instead the drug stacks on the terminal helix. The lack of interaction between caffeine and the theophylline-binding site emphasizes the extreme molecular discrimination of this RNA aptamer.

Full Text

The Full Text of this article is available as a PDF (419.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain F. H., Varani G. Divalent metal ion binding to a conserved wobble pair defining the upstream site of cleavage of group I self-splicing introns. Nucleic Acids Res. 1995 Feb 11;23(3):341–350. doi: 10.1093/nar/23.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Batey R. T., Inada M., Kujawinski E., Puglisi J. D., Williamson J. R. Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. Nucleic Acids Res. 1992 Sep 11;20(17):4515–4523. doi: 10.1093/nar/20.17.4515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dieckmann T., Suzuki E., Nakamura G. K., Feigon J. Solution structure of an ATP-binding RNA aptamer reveals a novel fold. RNA. 1996 Jul;2(7):628–640. [PMC free article] [PubMed] [Google Scholar]
  4. Ellington A. D., Szostak J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990 Aug 30;346(6287):818–822. doi: 10.1038/346818a0. [DOI] [PubMed] [Google Scholar]
  5. Fan P., Suri A. K., Fiala R., Live D., Patel D. J. Molecular recognition in the FMN-RNA aptamer complex. J Mol Biol. 1996 May 10;258(3):480–500. doi: 10.1006/jmbi.1996.0263. [DOI] [PubMed] [Google Scholar]
  6. Feigon J., Dieckmann T., Smith F. W. Aptamer structures from A to zeta. Chem Biol. 1996 Aug;3(8):611–617. doi: 10.1016/s1074-5521(96)90127-1. [DOI] [PubMed] [Google Scholar]
  7. Gold L., Polisky B., Uhlenbeck O., Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem. 1995;64:763–797. doi: 10.1146/annurev.bi.64.070195.003555. [DOI] [PubMed] [Google Scholar]
  8. Heus H. A., Pardi A. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science. 1991 Jul 12;253(5016):191–194. doi: 10.1126/science.1712983. [DOI] [PubMed] [Google Scholar]
  9. Jenison R. D., Gill S. C., Pardi A., Polisky B. High-resolution molecular discrimination by RNA. Science. 1994 Mar 11;263(5152):1425–1429. doi: 10.1126/science.7510417. [DOI] [PubMed] [Google Scholar]
  10. Jiang F., Kumar R. A., Jones R. A., Patel D. J. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature. 1996 Jul 11;382(6587):183–186. doi: 10.1038/382183a0. [DOI] [PubMed] [Google Scholar]
  11. Jiang L., Patel D. J. Solution structure of the tobramycin-RNA aptamer complex. Nat Struct Biol. 1998 Sep;5(9):769–774. doi: 10.1038/1804. [DOI] [PubMed] [Google Scholar]
  12. Jucker F. M., Heus H. A., Yip P. F., Moors E. H., Pardi A. A network of heterogeneous hydrogen bonds in GNRA tetraloops. J Mol Biol. 1996 Dec 20;264(5):968–980. doi: 10.1006/jmbi.1996.0690. [DOI] [PubMed] [Google Scholar]
  13. Jucker F. M., Pardi A. GNRA tetraloops make a U-turn. RNA. 1995 Apr;1(2):219–222. [PMC free article] [PubMed] [Google Scholar]
  14. Laing L. G., Gluick T. C., Draper D. E. Stabilization of RNA structure by Mg ions. Specific and non-specific effects. J Mol Biol. 1994 Apr 15;237(5):577–587. doi: 10.1006/jmbi.1994.1256. [DOI] [PubMed] [Google Scholar]
  15. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
  17. Nikonowicz E. P., Sirr A., Legault P., Jucker F. M., Baer L. M., Pardi A. Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies. Nucleic Acids Res. 1992 Sep 11;20(17):4507–4513. doi: 10.1093/nar/20.17.4507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Osborne Scott E., Ellington Andrew D. Nucleic Acid Selection and the Challenge of Combinatorial Chemistry. Chem Rev. 1997 Apr 1;97(2):349–370. doi: 10.1021/cr960009c. [DOI] [PubMed] [Google Scholar]
  19. Ott G., Arnold L., Limmer S. Proton NMR studies of manganese ion binding to tRNA-derived acceptor arm duplexes. Nucleic Acids Res. 1993 Dec 25;21(25):5859–5864. doi: 10.1093/nar/21.25.5859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Patel D. J. Structural analysis of nucleic acid aptamers. Curr Opin Chem Biol. 1997 Jun;1(1):32–46. doi: 10.1016/s1367-5931(97)80106-8. [DOI] [PubMed] [Google Scholar]
  21. Quigley G. J., Rich A. Structural domains of transfer RNA molecules. Science. 1976 Nov 19;194(4267):796–806. doi: 10.1126/science.790568. [DOI] [PubMed] [Google Scholar]
  22. SantaLucia J., Jr, Kierzek R., Turner D. H. Context dependence of hydrogen bond free energy revealed by substitutions in an RNA hairpin. Science. 1992 Apr 10;256(5054):217–219. doi: 10.1126/science.1373521. [DOI] [PubMed] [Google Scholar]
  23. Schimmel P. R., Redfield A. G. Transfer RNA in solution: selected topics. Annu Rev Biophys Bioeng. 1980;9:181–221. doi: 10.1146/annurev.bb.09.060180.001145. [DOI] [PubMed] [Google Scholar]
  24. Shields T. P., Mollova E., Ste Marie L., Hansen M. R., Pardi A. High-performance liquid chromatography purification of homogenous-length RNA produced by trans cleavage with a hammerhead ribozyme. RNA. 1999 Sep;5(9):1259–1267. doi: 10.1017/s1355838299990945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Tuerk C., Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990 Aug 3;249(4968):505–510. doi: 10.1126/science.2200121. [DOI] [PubMed] [Google Scholar]
  26. Wilson D. S., Szostak J. W. In vitro selection of functional nucleic acids. Annu Rev Biochem. 1999;68:611–647. doi: 10.1146/annurev.biochem.68.1.611. [DOI] [PubMed] [Google Scholar]
  27. Yang Y., Kochoyan M., Burgstaller P., Westhof E., Famulok M. Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science. 1996 May 31;272(5266):1343–1347. doi: 10.1126/science.272.5266.1343. [DOI] [PubMed] [Google Scholar]
  28. Zimmermann G. R., Jenison R. D., Wick C. L., Simorre J. P., Pardi A. Interlocking structural motifs mediate molecular discrimination by a theophylline-binding RNA. Nat Struct Biol. 1997 Aug;4(8):644–649. doi: 10.1038/nsb0897-644. [DOI] [PubMed] [Google Scholar]
  29. Zimmermann G. R., Shields T. P., Jenison R. D., Wick C. L., Pardi A. A semiconserved residue inhibits complex formation by stabilizing interactions in the free state of a theophylline-binding RNA. Biochemistry. 1998 Jun 23;37(25):9186–9192. doi: 10.1021/bi980082s. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES