Skip to main content
RNA logoLink to RNA
. 2000 May;6(5):744–754. doi: 10.1017/s1355838200000091

Puromycin-rRNA interaction sites at the peptidyl transferase center.

C Rodriguez-Fonseca 1, H Phan 1, K S Long 1, B T Porse 1, S V Kirillov 1, R Amils 1, R A Garrett 1
PMCID: PMC1369954  PMID: 10836795

Abstract

The binding site of puromycin was probed chemically in the peptidyl-transferase center of ribosomes from Escherichia coli and of puromycin-hypersensitive ribosomes from the archaeon Haloferax gibbonsii. Several nucleotides of the 23S rRNAs showed altered chemical reactivities in the presence of puromycin. They include A2439, G2505, and G2553 for E. coli, and G2058, A2503, G2505, and G2553 for Hf. gibbonsii (using the E. coli numbering system). Reproducible enhanced reactivities were also observed at A508 and A1579 within domains I and III, respectively, of E. coli 23S rRNA. In further experiments, puromycin was shown to produce a major reduction in the UV-induced crosslinking of deacylated-(2N3A76)tRNA to U2506 within the P' site of E. coli ribosomes. Moreover, it strongly stimulated the putative UV-induced crosslink between a streptogramin B drug and m2A2503/psi2504 at an adjacent site in E. coli 23S rRNA. These data strongly support the concept that puromycin, along with other peptidyl-transferase antibiotics, in particular the streptogramin B drugs, bind to an RNA structural motif that contains several conserved and accessible base moieties of the peptidyl transferase loop region. This streptogramin motif is also likely to provide binding sites for the 3' termini of the acceptor and donor tRNAs. In contrast, the effects at A508 and A1579, which are located at the exit site of the peptide channel, are likely to be caused by a structural effect transmitted along the peptide channel.

Full Text

The Full Text of this article is available as a PDF (678.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bocchetta M., Xiong L., Mankin A. S. 23S rRNA positions essential for tRNA binding in ribosomal functional sites. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3525–3530. doi: 10.1073/pnas.95.7.3525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bourd S. B., Kukhanova M. K., Gottikh B. P., Krayevsky A. A. Cooperative effects in the peptidyltransferase center of Escherichia coli ribosomes. Eur J Biochem. 1983 Oct 3;135(3):465–470. doi: 10.1111/j.1432-1033.1983.tb07674.x. [DOI] [PubMed] [Google Scholar]
  3. Chládek S., Ringer D., Abraham E. M. Fluorescent 2'(3')-O-aminoacylnucleosides-acceptor substrates for ribosomal peptidyltransferase+. Nucleic Acids Res. 1976 May;3(5):1215–1224. doi: 10.1093/nar/3.5.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Egebjerg J., Christiansen J., Garrett R. A. Attachment sites of primary binding proteins L1, L2 and L23 on 23 S ribosomal RNA of Escherichia coli. J Mol Biol. 1991 Nov 20;222(2):251–264. doi: 10.1016/0022-2836(91)90210-w. [DOI] [PubMed] [Google Scholar]
  5. Egebjerg J., Leffers H., Christensen A., Andersen H., Garrett R. A. Structure and accessibility of domain I of Escherichia coli 23 S RNA in free RNA, in the L24-RNA complex and in 50 S subunits. Implications for ribosomal assembly. J Mol Biol. 1987 Jul 5;196(1):125–136. doi: 10.1016/0022-2836(87)90515-8. [DOI] [PubMed] [Google Scholar]
  6. Green R., Switzer C., Noller H. F. Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA. Science. 1998 Apr 10;280(5361):286–289. doi: 10.1126/science.280.5361.286. [DOI] [PubMed] [Google Scholar]
  7. Hall C. C., Johnson D., Cooperman B. S. [3H]-p-azidopuromycin photoaffinity labeling of Escherichia coli ribosomes: evidence for site-specific interaction at U-2504 and G-2502 in domain V of 23S ribosomal RNA. Biochemistry. 1988 May 31;27(11):3983–3990. doi: 10.1021/bi00411a014. [DOI] [PubMed] [Google Scholar]
  8. Kim D. F., Green R. Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol Cell. 1999 Nov;4(5):859–864. doi: 10.1016/s1097-2765(00)80395-0. [DOI] [PubMed] [Google Scholar]
  9. Kirillov S. V., Porse B. T., Garrett R. A. Peptidyl transferase antibiotics perturb the relative positioning of the 3'-terminal adenosine of P/P'-site-bound tRNA and 23S rRNA in the ribosome. RNA. 1999 Aug;5(8):1003–1013. doi: 10.1017/s1355838299990568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kirillov S., Porse B. T., Vester B., Woolley P., Garrett R. A. Movement of the 3'-end of tRNA through the peptidyl transferase centre and its inhibition by antibiotics. FEBS Lett. 1997 Apr 14;406(3):223–233. doi: 10.1016/s0014-5793(97)00261-5. [DOI] [PubMed] [Google Scholar]
  11. Kowalak J. A., Bruenger E., McCloskey J. A. Posttranscriptional modification of the central loop of domain V in Escherichia coli 23 S ribosomal RNA. J Biol Chem. 1995 Jul 28;270(30):17758–17764. doi: 10.1074/jbc.270.30.17758. [DOI] [PubMed] [Google Scholar]
  12. Leviev I. G., Rodriguez-Fonseca C., Phan H., Garrett R. A., Heilek G., Noller H. F., Mankin A. S. A conserved secondary structural motif in 23S rRNA defines the site of interaction of amicetin, a universal inhibitor of peptide bond formation. EMBO J. 1994 Apr 1;13(7):1682–1686. doi: 10.1002/j.1460-2075.1994.tb06432.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moazed D., Noller H. F. Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. Biochimie. 1987 Aug;69(8):879–884. doi: 10.1016/0300-9084(87)90215-x. [DOI] [PubMed] [Google Scholar]
  14. Moazed D., Noller H. F. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell. 1989 May 19;57(4):585–597. doi: 10.1016/0092-8674(89)90128-1. [DOI] [PubMed] [Google Scholar]
  15. Nicholson A. W., Hall C. C., Strycharz W. A., Cooperman B. S. Photoaffinity labeling of Escherichia coli ribosomes by an aryl azide analogue of puromycin. Evidence for the functional site specificity of labeling. Biochemistry. 1982 Aug 3;21(16):3809–3817. doi: 10.1021/bi00259a014. [DOI] [PubMed] [Google Scholar]
  16. Nicholson A. W., Hall C. C., Strycharz W. A., Cooperman B. S. Photoaffinity labeling of Escherichia coli ribosomes by an aryl azide analogue of puromycin. On the identification of the major covalently labeled ribosomal proteins and on the mechanism of photoincorporation. Biochemistry. 1982 Aug 3;21(16):3797–3808. doi: 10.1021/bi00259a013. [DOI] [PubMed] [Google Scholar]
  17. Odom O. W., Picking W. D., Hardesty B. Movement of tRNA but not the nascent peptide during peptide bond formation on ribosomes. Biochemistry. 1990 Dec 4;29(48):10734–10744. doi: 10.1021/bi00500a004. [DOI] [PubMed] [Google Scholar]
  18. Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. 8. Survey of the effect of antibiotics of N-acetyl-phenylalanyl-puromycin formation: possible mechanism of chloramphenicol action. Arch Biochem Biophys. 1970 Jan;136(1):80–88. doi: 10.1016/0003-9861(70)90329-2. [DOI] [PubMed] [Google Scholar]
  19. Porse B. T., Garrett R. A. Sites of interaction of streptogramin A and B antibiotics in the peptidyl transferase loop of 23 S rRNA and the synergism of their inhibitory mechanisms. J Mol Biol. 1999 Feb 19;286(2):375–387. doi: 10.1006/jmbi.1998.2509. [DOI] [PubMed] [Google Scholar]
  20. Porse B. T., Kirillov S. V., Awayez M. J., Garrett R. A. UV-induced modifications in the peptidyl transferase loop of 23S rRNA dependent on binding of the streptogramin B antibiotic, pristinamycin IA. RNA. 1999 Apr;5(4):585–595. doi: 10.1017/s135583829998202x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Porse B. T., Kirillov S. V., Awayez M. J., Ottenheijm H. C., Garrett R. A. Direct crosslinking of the antitumor antibiotic sparsomycin, and its derivatives, to A2602 in the peptidyl transferase center of 23S-like rRNA within ribosome-tRNA complexes. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):9003–9008. doi: 10.1073/pnas.96.16.9003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Porse B. T., Rodriguez-Fonseca C., Leviev I., Garrett R. A. Antibiotic inhibition of the movement of tRNA substrates through a peptidyl transferase cavity. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):877–885. doi: 10.1139/o95-095. [DOI] [PubMed] [Google Scholar]
  23. Powers T., Noller H. F. A functional pseudoknot in 16S ribosomal RNA. EMBO J. 1991 Aug;10(8):2203–2214. doi: 10.1002/j.1460-2075.1991.tb07756.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rodriguez-Fonseca C., Amils R., Garrett R. A. Fine structure of the peptidyl transferase centre on 23 S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes. J Mol Biol. 1995 Mar 24;247(2):224–235. doi: 10.1006/jmbi.1994.0135. [DOI] [PubMed] [Google Scholar]
  25. Rychlík I., Cerná J., Chládek S., Pulkrábek P., Zemlicka J. Substrate specificity of ribosomal peptidyl transferase. The effect of the nature of the amino acid side chain on the acceptor activity of 2'(3')-O-aminoacyladenosines. Eur J Biochem. 1970 Sep;16(1):136–142. doi: 10.1111/j.1432-1033.1970.tb01064.x. [DOI] [PubMed] [Google Scholar]
  26. Smith J. E., Cooperman B. S., Mitchell P. Methylation sites in Escherichia coli ribosomal RNA: localization and identification of four new sites of methylation in 23S rRNA. Biochemistry. 1992 Nov 10;31(44):10825–10834. doi: 10.1021/bi00159a025. [DOI] [PubMed] [Google Scholar]
  27. TRAUT R. R., MONRO R. E. THE PUROMYCIN REACTION AND ITS RELATION TO PROTEIN SYNTHESIS. J Mol Biol. 1964 Oct;10:63–72. doi: 10.1016/s0022-2836(64)80028-0. [DOI] [PubMed] [Google Scholar]
  28. Wower J., Wower I. K., Kirillov S. V., Rosen K. V., Hixson S. S., Zimmermann R. A. Peptidyl transferase and beyond. Biochem Cell Biol. 1995 Nov-Dec;73(11-12):1041–1047. doi: 10.1139/o95-111. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES