Skip to main content
RNA logoLink to RNA
. 2000 May;6(5):755–767. doi: 10.1017/s1355838200000170

A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains.

C X Chen 1, D S Cho 1, Q Wang 1, F Lai 1, K C Carter 1, K Nishikura 1
PMCID: PMC1369955  PMID: 10836796

Abstract

Members of the double-stranded RNA- (dsRNA) specific adenosine deaminase gene family convert adenosine residues into inosines in dsRNA and are involved in A-to-I RNA editing of transcripts of glutamate receptor (GluR) subunits and serotonin receptor subtype 2C (5-HT(2C)R). We have isolated hADAR3, the third member of this class of human enzyme and investigated its editing site selectivity using in vitro RNA editing assay systems. As originally reported for rat ADAR3 or RED2, purified ADAR3 proteins could not edit GluR-B RNA at the "Q/R" site, the "R/G" site, and the intronic "hot spot" site. In addition, ADAR3 did not edit any of five sites discovered recently within the intracellular loop II region of 5-HT(2C)R RNAs, confirming its total lack of editing activity for currently known substrate RNAs. Filter-binding analyses revealed that ADAR3 is capable of binding not only to dsRNA but also to single-stranded RNA (ssRNA). Deletion mutagenesis identified a region rich in arginine residues located in the N-terminus that is responsible for binding of ADAR3 to ssRNA. The presence of this ssRNA-binding domain as well as its expression in restricted brain regions and postmitotic neurons make ADAR3 distinct from the other two ADAR gene family members, editing competent ADAR1 and ADAR2. ADAR3 inhibited in vitro the activities of RNA editing enzymes of the ADAR gene family, raising the possibility of a regulatory role in RNA editing.

Full Text

The Full Text of this article is available as a PDF (691.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  2. Bass B. L., Nishikura K., Keller W., Seeburg P. H., Emeson R. B., O'Connell M. A., Samuel C. E., Herbert A. A standardized nomenclature for adenosine deaminases that act on RNA. RNA. 1997 Sep;3(9):947–949. [PMC free article] [PubMed] [Google Scholar]
  3. Boguski M. S., Lowe T. M., Tolstoshev C. M. dbEST--database for "expressed sequence tags". Nat Genet. 1993 Aug;4(4):332–333. doi: 10.1038/ng0893-332. [DOI] [PubMed] [Google Scholar]
  4. Burns C. M., Chu H., Rueter S. M., Hutchinson L. K., Canton H., Sanders-Bush E., Emeson R. B. Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature. 1997 May 15;387(6630):303–308. doi: 10.1038/387303a0. [DOI] [PubMed] [Google Scholar]
  5. Calnan B. J., Tidor B., Biancalana S., Hudson D., Frankel A. D. Arginine-mediated RNA recognition: the arginine fork. Science. 1991 May 24;252(5009):1167–1171. doi: 10.1126/science.252.5009.1167. [DOI] [PubMed] [Google Scholar]
  6. Dabiri G. A., Lai F., Drakas R. A., Nishikura K. Editing of the GLuR-B ion channel RNA in vitro by recombinant double-stranded RNA adenosine deaminase. EMBO J. 1996 Jan 2;15(1):34–45. [PMC free article] [PubMed] [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fitzgerald L. W., Iyer G., Conklin D. S., Krause C. M., Marshall A., Patterson J. P., Tran D. P., Jonak G. J., Hartig P. R. Messenger RNA editing of the human serotonin 5-HT2C receptor. Neuropsychopharmacology. 1999 Aug;21(2 Suppl):82S–90S. doi: 10.1016/S0893-133X(99)00004-4. [DOI] [PubMed] [Google Scholar]
  9. Gerber A., Grosjean H., Melcher T., Keller W. Tad1p, a yeast tRNA-specific adenosine deaminase, is related to the mammalian pre-mRNA editing enzymes ADAR1 and ADAR2. EMBO J. 1998 Aug 17;17(16):4780–4789. doi: 10.1093/emboj/17.16.4780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gerber A., O'Connell M. A., Keller W. Two forms of human double-stranded RNA-specific editase 1 (hRED1) generated by the insertion of an Alu cassette. RNA. 1997 May;3(5):453–463. [PMC free article] [PubMed] [Google Scholar]
  11. Guan K. L., Dixon J. E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem. 1991 Feb 1;192(2):262–267. doi: 10.1016/0003-2697(91)90534-z. [DOI] [PubMed] [Google Scholar]
  12. Herb A., Higuchi M., Sprengel R., Seeburg P. H. Q/R site editing in kainate receptor GluR5 and GluR6 pre-mRNAs requires distant intronic sequences. Proc Natl Acad Sci U S A. 1996 Mar 5;93(5):1875–1880. doi: 10.1073/pnas.93.5.1875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Herbert A., Alfken J., Kim Y. G., Mian I. S., Nishikura K., Rich A. A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc Natl Acad Sci U S A. 1997 Aug 5;94(16):8421–8426. doi: 10.1073/pnas.94.16.8421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Higuchi M., Single F. N., Köhler M., Sommer B., Sprengel R., Seeburg P. H. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell. 1993 Dec 31;75(7):1361–1370. doi: 10.1016/0092-8674(93)90622-w. [DOI] [PubMed] [Google Scholar]
  15. Hough R. F., Bass B. L. Analysis of Xenopus dsRNA adenosine deaminase cDNAs reveals similarities to DNA methyltransferases. RNA. 1997 Apr;3(4):356–370. [PMC free article] [PubMed] [Google Scholar]
  16. Kim U., Garner T. L., Sanford T., Speicher D., Murray J. M., Nishikura K. Purification and characterization of double-stranded RNA adenosine deaminase from bovine nuclear extracts. J Biol Chem. 1994 May 6;269(18):13480–13489. [PubMed] [Google Scholar]
  17. Kim U., Wang Y., Sanford T., Zeng Y., Nishikura K. Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11457–11461. doi: 10.1073/pnas.91.24.11457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Köhler M., Burnashev N., Sakmann B., Seeburg P. H. Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron. 1993 Mar;10(3):491–500. doi: 10.1016/0896-6273(93)90336-p. [DOI] [PubMed] [Google Scholar]
  20. Lai F., Chen C. X., Carter K. C., Nishikura K. Editing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases. Mol Cell Biol. 1997 May;17(5):2413–2424. doi: 10.1128/mcb.17.5.2413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lai F., Chen C. X., Lee V. M., Nishikura K. Dramatic increase of the RNA editing for glutamate receptor subunits during terminal differentiation of clonal human neurons. J Neurochem. 1997 Jul;69(1):43–52. doi: 10.1046/j.1471-4159.1997.69010043.x. [DOI] [PubMed] [Google Scholar]
  22. Lai F., Drakas R., Nishikura K. Mutagenic analysis of double-stranded RNA adenosine deaminase, a candidate enzyme for RNA editing of glutamate-gated ion channel transcripts. J Biol Chem. 1995 Jul 21;270(29):17098–17105. doi: 10.1074/jbc.270.29.17098. [DOI] [PubMed] [Google Scholar]
  23. Lazinski D., Grzadzielska E., Das A. Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell. 1989 Oct 6;59(1):207–218. doi: 10.1016/0092-8674(89)90882-9. [DOI] [PubMed] [Google Scholar]
  24. Lomeli H., Mosbacher J., Melcher T., Höger T., Geiger J. R., Kuner T., Monyer H., Higuchi M., Bach A., Seeburg P. H. Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science. 1994 Dec 9;266(5191):1709–1713. doi: 10.1126/science.7992055. [DOI] [PubMed] [Google Scholar]
  25. Maas S., Melcher T., Herb A., Seeburg P. H., Keller W., Krause S., Higuchi M., O'Connell M. A. Structural requirements for RNA editing in glutamate receptor pre-mRNAs by recombinant double-stranded RNA adenosine deaminase. J Biol Chem. 1996 May 24;271(21):12221–12226. doi: 10.1074/jbc.271.21.12221. [DOI] [PubMed] [Google Scholar]
  26. Melcher T., Maas S., Herb A., Sprengel R., Higuchi M., Seeburg P. H. RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J Biol Chem. 1996 Dec 13;271(50):31795–31798. doi: 10.1074/jbc.271.50.31795. [DOI] [PubMed] [Google Scholar]
  27. Melcher T., Maas S., Herb A., Sprengel R., Seeburg P. H., Higuchi M. A mammalian RNA editing enzyme. Nature. 1996 Feb 1;379(6564):460–464. doi: 10.1038/379460a0. [DOI] [PubMed] [Google Scholar]
  28. Niswender C. M., Copeland S. C., Herrick-Davis K., Emeson R. B., Sanders-Bush E. RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity. J Biol Chem. 1999 Apr 2;274(14):9472–9478. doi: 10.1074/jbc.274.14.9472. [DOI] [PubMed] [Google Scholar]
  29. Nutt S. L., Kamboj R. K. Differential RNA editing efficiency of AMPA receptor subunit GluR-2 in human brain. Neuroreport. 1994 Aug 15;5(13):1679–1683. doi: 10.1097/00001756-199408150-00034. [DOI] [PubMed] [Google Scholar]
  30. O'Connell M. A., Krause S., Higuchi M., Hsuan J. J., Totty N. F., Jenny A., Keller W. Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol Cell Biol. 1995 Mar;15(3):1389–1397. doi: 10.1128/mcb.15.3.1389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Paschen W., Djuricic B. Regional differences in the extent of RNA editing of the glutamate receptor subunits GluR2 and GluR6 in rat brain. J Neurosci Methods. 1995 Jan;56(1):21–29. doi: 10.1016/0165-0270(94)00085-u. [DOI] [PubMed] [Google Scholar]
  32. Patterson J. B., Samuel C. E. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol. 1995 Oct;15(10):5376–5388. doi: 10.1128/mcb.15.10.5376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Patton D. E., Silva T., Bezanilla F. RNA editing generates a diverse array of transcripts encoding squid Kv2 K+ channels with altered functional properties. Neuron. 1997 Sep;19(3):711–722. doi: 10.1016/s0896-6273(00)80383-9. [DOI] [PubMed] [Google Scholar]
  34. Paul M. S., Bass B. L. Inosine exists in mRNA at tissue-specific levels and is most abundant in brain mRNA. EMBO J. 1998 Feb 16;17(4):1120–1127. doi: 10.1093/emboj/17.4.1120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rueter S. M., Dawson T. R., Emeson R. B. Regulation of alternative splicing by RNA editing. Nature. 1999 May 6;399(6731):75–80. doi: 10.1038/19992. [DOI] [PubMed] [Google Scholar]
  36. Saccomanno L., Bass B. L. The cytoplasm of Xenopus oocytes contains a factor that protects double-stranded RNA from adenosine-to-inosine modification. Mol Cell Biol. 1994 Aug;14(8):5425–5432. doi: 10.1128/mcb.14.8.5425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Smith H. C., Gott J. M., Hanson M. R. A guide to RNA editing. RNA. 1997 Oct;3(10):1105–1123. [PMC free article] [PubMed] [Google Scholar]
  38. Sommer B., Köhler M., Sprengel R., Seeburg P. H. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell. 1991 Oct 4;67(1):11–19. doi: 10.1016/0092-8674(91)90568-j. [DOI] [PubMed] [Google Scholar]
  39. Wagner R. W., Yoo C., Wrabetz L., Kamholz J., Buchhalter J., Hassan N. F., Khalili K., Kim S. U., Perussia B., McMorris F. A. Double-stranded RNA unwinding and modifying activity is detected ubiquitously in primary tissues and cell lines. Mol Cell Biol. 1990 Oct;10(10):5586–5590. doi: 10.1128/mcb.10.10.5586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wang Q., O'Brien P. J., Chen C. X., Cho D. S., Murray J. M., Nishikura K. Altered G protein-coupling functions of RNA editing isoform and splicing variant serotonin2C receptors. J Neurochem. 2000 Mar;74(3):1290–1300. doi: 10.1046/j.1471-4159.2000.741290.x. [DOI] [PubMed] [Google Scholar]
  41. Xie E., Zhu L., Zhao L., Chang L. S. The human serotonin 5-HT2C receptor: complete cDNA, genomic structure, and alternatively spliced variant. Genomics. 1996 Aug 1;35(3):551–561. doi: 10.1006/geno.1996.0397. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES