Abstract
The 5' cap and poly(A) tail of eukaryotic mRNAs work synergistically to enhance translation through a process that requires interaction of the cap-associated eukaryotic initiation factor, eIF-4G, and the poly(A)-binding protein, PABP. Because the mRNAs of rotavirus, and other members of the Reoviridae, contain caps but lack poly(A) tails, their translation may be enhanced through a unique mechanism. To identify translation-enhancement elements in the viral mRNAs that stimulate translation in vivo, chimeric RNAs were prepared that contained an open reading frame for luciferase and the 5' and 3' untranslated regions (UTRs) of a rotavirus mRNA or of a nonviral mRNA. Transfection of the chimeric RNAs into rotavirus-infected cells showed that the viral 3' UTR contained a translation-enhancement element that promoted gene expression. The element did not enhance gene expression in uninfected cells and did not affect the stability of the RNAs. Mutagenesis showed that the conserved sequence GACC located at the 3' end of rotavirus mRNAs operated as an enhancement element. The 3'-GACC element stimulated protein expression independently of the sequence of the 5' UTR, although efficient expression required the RNA to contain a cap. The results indicate that the expression of viral proteins in rotavirus-infected cells is specifically up-regulated by the activity of a novel 4-nt 3' translation enhancer (TE) common to the 11 nonpolyadenylated mRNAs of the virus. The 4-nt sequence of the rotavirus 3' TE represents by far the shortest of any of the sequence enhancers known to stimulate translation.
Full Text
The Full Text of this article is available as a PDF (885.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allison R. F., Janda M., Ahlquist P. Infectious in vitro transcripts from cowpea chlorotic mottle virus cDNA clones and exchange of individual RNA components with brome mosaic virus. J Virol. 1988 Oct;62(10):3581–3588. doi: 10.1128/jvi.62.10.3581-3588.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen D., Patton J. T. Rotavirus RNA replication requires a single-stranded 3' end for efficient minus-strand synthesis. J Virol. 1998 Sep;72(9):7387–7396. doi: 10.1128/jvi.72.9.7387-7396.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen D., Zeng C. Q., Wentz M. J., Gorziglia M., Estes M. K., Ramig R. F. Template-dependent, in vitro replication of rotavirus RNA. J Virol. 1994 Nov;68(11):7030–7039. doi: 10.1128/jvi.68.11.7030-7039.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Desselberger U., McCrae M. A. The rotavirus genome. Curr Top Microbiol Immunol. 1994;185:31–66. doi: 10.1007/978-3-642-78256-5_3. [DOI] [PubMed] [Google Scholar]
- Gallie D. R. A tale of two termini: a functional interaction between the termini of an mRNA is a prerequisite for efficient translation initiation. Gene. 1998 Aug 17;216(1):1–11. doi: 10.1016/s0378-1119(98)00318-7. [DOI] [PubMed] [Google Scholar]
- Gallie D. R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 1991 Nov;5(11):2108–2116. doi: 10.1101/gad.5.11.2108. [DOI] [PubMed] [Google Scholar]
- Gallie D. R., Walbot V. RNA pseudoknot domain of tobacco mosaic virus can functionally substitute for a poly(A) tail in plant and animal cells. Genes Dev. 1990 Jul;4(7):1149–1157. doi: 10.1101/gad.4.7.1149. [DOI] [PubMed] [Google Scholar]
- Gorziglia M. I., Collins P. L. Intracellular amplification and expression of a synthetic analog of rotavirus genomic RNA bearing a foreign marker gene: mapping cis-acting nucleotides in the 3'-noncoding region. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5784–5788. doi: 10.1073/pnas.89.13.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hann L. E., Webb A. C., Cai J. M., Gehrke L. Identification of a competitive translation determinant in the 3' untranslated region of alfalfa mosaic virus coat protein mRNA. Mol Cell Biol. 1997 Apr;17(4):2005–2013. doi: 10.1128/mcb.17.4.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helmberger-Jones M., Patton J. T. Characterization of subviral particles in cells infected with simian rotavirus SA11. Virology. 1986 Dec;155(2):655–665. doi: 10.1016/0042-6822(86)90225-4. [DOI] [PubMed] [Google Scholar]
- Hosfield D. J., Mol C. D., Shen B., Tainer J. A. Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity. Cell. 1998 Oct 2;95(1):135–146. doi: 10.1016/s0092-8674(00)81789-4. [DOI] [PubMed] [Google Scholar]
- Imai M., Akatani K., Ikegami N., Furuichi Y. Capped and conserved terminal structures in human rotavirus genome double-stranded RNA segments. J Virol. 1983 Jul;47(1):125–136. doi: 10.1128/jvi.47.1.125-136.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imataka H., Gradi A., Sonenberg N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 1998 Dec 15;17(24):7480–7489. doi: 10.1093/emboj/17.24.7480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson M. A., McCrae M. A. Molecular biology of rotaviruses. VIII. Quantitative analysis of regulation of gene expression during virus replication. J Virol. 1989 May;63(5):2048–2055. doi: 10.1128/jvi.63.5.2048-2055.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le H., Tanguay R. L., Balasta M. L., Wei C. C., Browning K. S., Metz A. M., Goss D. J., Gallie D. R. Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J Biol Chem. 1997 Jun 27;272(26):16247–16255. doi: 10.1074/jbc.272.26.16247. [DOI] [PubMed] [Google Scholar]
- Leathers V., Tanguay R., Kobayashi M., Gallie D. R. A phylogenetically conserved sequence within viral 3' untranslated RNA pseudoknots regulates translation. Mol Cell Biol. 1993 Sep;13(9):5331–5347. doi: 10.1128/mcb.13.9.5331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mansell E. A., Ramig R. F., Patton J. T. Temperature-sensitive lesions in the capsid proteins of the rotavirus mutants tsF and tsG that affect virion assembly. Virology. 1994 Oct;204(1):69–81. doi: 10.1006/viro.1994.1511. [DOI] [PubMed] [Google Scholar]
- Martin S. L., Zimmer E. A., Davidson W. S., Wilson A. C., Kan Y. W. The untranslated regions of beta-globin mRNA evolve at a functional rate in higher primates. Cell. 1981 Sep;25(3):737–741. doi: 10.1016/0092-8674(81)90181-1. [DOI] [PubMed] [Google Scholar]
- Mathews D. H., Sabina J., Zuker M., Turner D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999 May 21;288(5):911–940. doi: 10.1006/jmbi.1999.2700. [DOI] [PubMed] [Google Scholar]
- Mattion N. M., Cohen J., Aponte C., Estes M. K. Characterization of an oligomerization domain and RNA-binding properties on rotavirus nonstructural protein NS34. Virology. 1992 Sep;190(1):68–83. doi: 10.1016/0042-6822(92)91193-x. [DOI] [PubMed] [Google Scholar]
- McCrae M. A., McCorquodale J. G. Molecular biology of rotaviruses. V. Terminal structure of viral RNA species. Virology. 1983 Apr 15;126(1):204–212. doi: 10.1016/0042-6822(83)90472-5. [DOI] [PubMed] [Google Scholar]
- Meulewaeter F., Van Montagu M., Cornelissen M. Features of the autonomous function of the translational enhancer domain of satellite tobacco necrosis virus. RNA. 1998 Nov;4(11):1347–1356. doi: 10.1017/s135583829898092x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchell D. B., Both G. W. Simian rotavirus SA11 segment 11 contains overlapping reading frames. Nucleic Acids Res. 1988 Jul 11;16(13):6244–6244. doi: 10.1093/nar/16.13.6244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pandey N. B., Williams A. S., Sun J. H., Brown V. D., Bond U., Marzluff W. F. Point mutations in the stem-loop at the 3' end of mouse histone mRNA reduce expression by reducing the efficiency of 3' end formation. Mol Cell Biol. 1994 Mar;14(3):1709–1720. doi: 10.1128/mcb.14.3.1709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patton J. T., Chen D. RNA-binding and capping activities of proteins in rotavirus open cores. J Virol. 1999 Feb;73(2):1382–1391. doi: 10.1128/jvi.73.2.1382-1391.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patton J. T. Rotavirus VP1 alone specifically binds to the 3' end of viral mRNA, but the interaction is not sufficient to initiate minus-strand synthesis. J Virol. 1996 Nov;70(11):7940–7947. doi: 10.1128/jvi.70.11.7940-7947.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patton J. T. Structure and function of the rotavirus RNA-binding proteins. J Gen Virol. 1995 Nov;76(Pt 11):2633–2644. doi: 10.1099/0022-1317-76-11-2633. [DOI] [PubMed] [Google Scholar]
- Patton J. T., Wentz M., Xiaobo J., Ramig R. F. cis-Acting signals that promote genome replication in rotavirus mRNA. J Virol. 1996 Jun;70(6):3961–3971. doi: 10.1128/jvi.70.6.3961-3971.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piron M., Delaunay T., Grosclaude J., Poncet D. Identification of the RNA-binding, dimerization, and eIF4GI-binding domains of rotavirus nonstructural protein NSP3. J Virol. 1999 Jul;73(7):5411–5421. doi: 10.1128/jvi.73.7.5411-5421.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piron M., Vende P., Cohen J., Poncet D. Rotavirus RNA-binding protein NSP3 interacts with eIF4GI and evicts the poly(A) binding protein from eIF4F. EMBO J. 1998 Oct 1;17(19):5811–5821. doi: 10.1093/emboj/17.19.5811. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poncet D., Aponte C., Cohen J. Rotavirus protein NSP3 (NS34) is bound to the 3' end consensus sequence of viral mRNAs in infected cells. J Virol. 1993 Jun;67(6):3159–3165. doi: 10.1128/jvi.67.6.3159-3165.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poncet D., Laurent S., Cohen J. Four nucleotides are the minimal requirement for RNA recognition by rotavirus non-structural protein NSP3. EMBO J. 1994 Sep 1;13(17):4165–4173. doi: 10.1002/j.1460-2075.1994.tb06734.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preiss T., Hentze M. W. Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature. 1998 Apr 2;392(6675):516–520. doi: 10.1038/33192. [DOI] [PubMed] [Google Scholar]
- Tarun S. Z., Jr, Sachs A. B. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 1996 Dec 16;15(24):7168–7177. [PMC free article] [PubMed] [Google Scholar]
- Wang S., Guo L., Allen E., Miller W. A. A potential mechanism for selective control of cap-independent translation by a viral RNA sequence in cis and in trans. RNA. 1999 Jun;5(6):728–738. doi: 10.1017/s1355838299981979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wentz M. J., Patton J. T., Ramig R. F. The 3'-terminal consensus sequence of rotavirus mRNA is the minimal promoter of negative-strand RNA synthesis. J Virol. 1996 Nov;70(11):7833–7841. doi: 10.1128/jvi.70.11.7833-7841.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams A. S., Marzluff W. F. The sequence of the stem and flanking sequences at the 3' end of histone mRNA are critical determinants for the binding of the stem-loop binding protein. Nucleic Acids Res. 1995 Feb 25;23(4):654–662. doi: 10.1093/nar/23.4.654. [DOI] [PMC free article] [PubMed] [Google Scholar]