Skip to main content
RNA logoLink to RNA
. 2000 Jun;6(6):912–918. doi: 10.1017/s1355838200000339

Enhanced detection of tRNA isoacceptors by combinatorial oligonucleotide hybridization.

A Buvoli 1, M Buvoli 1, L A Leinwand 1
PMCID: PMC1369967  PMID: 10864048

Abstract

A method that greatly enhances the detection of tRNA by oligodeoxyribonucleotide probe hybridization has been developed. Because highly structured tRNA regions often preclude heteroduplex formation, we have tested the ability of cold oligodeoxyribonucleotides called unfolders to disrupt the tRNA secondary/tertiary structures and promote hybridization of a second labeled oligonucleotide complementary to the anticodon loop. Here we show that an excess of unfolders in the pre/hybridization reaction can enhance a barely detectable hybridization signal by more than 200-fold without affecting probe specificity. This sensitive assay makes it possible to easily study and monitor changes in tRNA isoacceptor expression.

Full Text

The Full Text of this article is available as a PDF (448.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achsel T., Gross H. J. Identity determinants of human tRNA(Ser): sequence elements necessary for serylation and maturation of a tRNA with a long extra arm. EMBO J. 1993 Aug;12(8):3333–3338. doi: 10.1002/j.1460-2075.1993.tb06003.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown J. E., Klement J. F., McAllister W. T. Sequences of three promoters for the bacteriophage SP6 RNA polymerase. Nucleic Acids Res. 1986 Apr 25;14(8):3521–3526. doi: 10.1093/nar/14.8.3521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buvoli M., Buvoli A., Leinwand L. A. Suppression of nonsense mutations in cell culture and mice by multimerized suppressor tRNA genes. Mol Cell Biol. 2000 May;20(9):3116–3124. doi: 10.1128/mcb.20.9.3116-3124.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Capone J. P., Sharp P. A., RajBhandary U. L. Amber, ochre and opal suppressor tRNA genes derived from a human serine tRNA gene. EMBO J. 1985 Jan;4(1):213–221. doi: 10.1002/j.1460-2075.1985.tb02338.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Crothers D. M., Cole P. E., Hilbers C. W., Shulman R. G. The molecular mechanism of thermal unfolding of Escherichia coli formylmethionine transfer RNA. J Mol Biol. 1974 Jul 25;87(1):63–88. doi: 10.1016/0022-2836(74)90560-9. [DOI] [PubMed] [Google Scholar]
  6. Dirheimer G., Baranowski W., Keith G. Variations in tRNA modifications, particularly of their queuine content in higher eukaryotes. Its relation to malignancy grading. Biochimie. 1995;77(1-2):99–103. doi: 10.1016/0300-9084(96)88111-9. [DOI] [PubMed] [Google Scholar]
  7. Graeber M. B., Müller U. Recent developments in the molecular genetics of mitochondrial disorders. J Neurol Sci. 1998 Jan 8;153(2):251–263. doi: 10.1016/s0022-510x(97)00295-5. [DOI] [PubMed] [Google Scholar]
  8. Hatlen L., Attardi G. Proportion of HeLa cell genome complementary to transfer RNA and 5 s RNA. J Mol Biol. 1971 Mar 28;56(3):535–553. doi: 10.1016/0022-2836(71)90400-1. [DOI] [PubMed] [Google Scholar]
  9. Hayase Y., Inoue H., Ohtsuka E. Secondary structure in formylmethionine tRNA influences the site-directed cleavage of ribonuclease H using chimeric 2'-O-methyl oligodeoxyribonucleotides. Biochemistry. 1990 Sep 18;29(37):8793–8797. doi: 10.1021/bi00489a041. [DOI] [PubMed] [Google Scholar]
  10. Heckl M., Busch K., Gross H. J. Minimal tRNA(Ser) and tRNA(Sec) substrates for human seryl-tRNA synthetase: contribution of tRNA domains to serylation and tertiary structure. FEBS Lett. 1998 May 15;427(3):315–319. doi: 10.1016/s0014-5793(98)00435-9. [DOI] [PubMed] [Google Scholar]
  11. Jankowsky E., Schwenzer B. Efficient improvement of hammerhead ribozyme mediated cleavage of long substrates by oligonucleotide facilitators. Biochemistry. 1996 Dec 3;35(48):15313–15321. doi: 10.1021/bi961397f. [DOI] [PubMed] [Google Scholar]
  12. Kumazawa Y., Yokogawa T., Tsurui H., Miura K., Watanabe K. Effect of the higher-order structure of tRNAs on the stability of hybrids with oligodeoxyribonucleotides: separation of tRNA by an efficient solution hybridization. Nucleic Acids Res. 1992 May 11;20(9):2223–2232. doi: 10.1093/nar/20.9.2223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mathews D. H., Sabina J., Zuker M., Turner D. H. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol. 1999 May 21;288(5):911–940. doi: 10.1006/jmbi.1999.2700. [DOI] [PubMed] [Google Scholar]
  14. Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
  15. Mir K. U., Southern E. M. Determining the influence of structure on hybridization using oligonucleotide arrays. Nat Biotechnol. 1999 Aug;17(8):788–792. doi: 10.1038/11732. [DOI] [PubMed] [Google Scholar]
  16. Mukerjee H., Goldfeder A. Transfer RNA species in tumors of different growth rates. Cancer Res. 1976 Sep;36(9 PT1):3330–3338. [PubMed] [Google Scholar]
  17. Petyuk V. A., Zenkova M. A., Giege R., Vlassov V. V. Hybridization of antisense oligonucleotides with the 3'part of tRNA(Phe). FEBS Lett. 1999 Feb 12;444(2-3):217–221. doi: 10.1016/s0014-5793(99)00063-0. [DOI] [PubMed] [Google Scholar]
  18. Sprinzl M., Grueter F., Spelzhaus A., Gauss D. H. Compilation of tRNA sequences. Nucleic Acids Res. 1980 Jan 11;8(1):r1–r22. [PMC free article] [PubMed] [Google Scholar]
  19. Sugimoto N., Nakano S., Katoh M., Matsumura A., Nakamuta H., Ohmichi T., Yoneyama M., Sasaki M. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry. 1995 Sep 5;34(35):11211–11216. doi: 10.1021/bi00035a029. [DOI] [PubMed] [Google Scholar]
  20. Varshavsky A. The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12142–12149. doi: 10.1073/pnas.93.22.12142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. White R. J. Regulation of RNA polymerases I and III by the retinoblastoma protein: a mechanism for growth control? Trends Biochem Sci. 1997 Mar;22(3):77–80. doi: 10.1016/s0968-0004(96)10067-0. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES