Skip to main content
RNA logoLink to RNA
. 2000 Jul;6(7):976–987. doi: 10.1017/s1355838200000480

Cross-talk between orientation-dependent recognition determinants of a complex control RNA element, the enterovirus oriR.

W J Melchers 1, J M Bakkers 1, H J Bruins Slot 1, J M Galama 1, V I Agol 1, E V Pilipenko 1
PMCID: PMC1369974  PMID: 10917594

Abstract

The coxsackie B3 virus oriR is an element of viral RNA thought to promote the assembly of a ribonucleoprotein complex involved in the initiation of genome replication. The mutual orientation of its two helical domains X and Y is determined by a kissing interaction between the loops of these domains. Here, a genetic approach was worked out to identify spatial orientation-dependent recognition signals in these helices. Spatial orientation changes (due to linear and rotational shifts) were introduced by appropriate insertions/deletions of a single base pair into one or both of the domains, and phenotypic consequences caused by these mutations were studied. The insertion of a base pair into domain Y caused a defect in viral reproduction that could be suppressed by a base-pair insertion into domain X. Similarly, a defect in viral replication caused by a base-pair deletion from domain X could be suppressed by a base-pair deletion from domain Y. Thus, certain areas of the two domains should cross-talk to one another in the sense that a change of space position of one of them required an adequate reply (change of space position) from the other. Phenotypic effects of the local rotation of one or more base pairs (and of some other mutations) in either domain X or domain Y suggested that the two most distal base pairs of these domains served as orientation-dependent recognizable signals. The results were also consistent with the notion that the recognition of the distal base pair of domain Y involved a mechanism similar to the intercalation of an amino acid residue.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agol V. I., Paul A. V., Wimmer E. Paradoxes of the replication of picornaviral genomes. Virus Res. 1999 Aug;62(2):129–147. doi: 10.1016/s0168-1702(99)00037-4. [DOI] [PubMed] [Google Scholar]
  2. Baeyens K. J., De Bondt H. L., Pardi A., Holbrook S. R. A curved RNA helix incorporating an internal loop with G.A and A.A non-Watson-Crick base pairing. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12851–12855. doi: 10.1073/pnas.93.23.12851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Belsham G. J., Sonenberg N. RNA-protein interactions in regulation of picornavirus RNA translation. Microbiol Rev. 1996 Sep;60(3):499–511. doi: 10.1128/mr.60.3.499-511.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fourmy D., Recht M. I., Blanchard S. C., Puglisi J. D. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science. 1996 Nov 22;274(5291):1367–1371. doi: 10.1126/science.274.5291.1367. [DOI] [PubMed] [Google Scholar]
  5. Frolov I., McBride M. S., Rice C. M. cis-acting RNA elements required for replication of bovine viral diarrhea virus-hepatitis C virus 5' nontranslated region chimeras. RNA. 1998 Nov;4(11):1418–1435. doi: 10.1017/s1355838298981031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Giegé R. Interplay of tRNA-like structures from plant viral RNAs with partners of the translation and replication machineries. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12078–12081. doi: 10.1073/pnas.93.22.12078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gromeier M., Bossert B., Arita M., Nomoto A., Wimmer E. Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J Virol. 1999 Feb;73(2):958–964. doi: 10.1128/jvi.73.2.958-964.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gutell R. R., Larsen N., Woese C. R. Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev. 1994 Mar;58(1):10–26. doi: 10.1128/mr.58.1.10-26.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hellendoorn K., Verlaan P. W., Pleij C. W. A functional role for the conserved protonatable hairpins in the 5' untranslated region of turnip yellow mosaic virus RNA. J Virol. 1997 Nov;71(11):8774–8779. doi: 10.1128/jvi.71.11.8774-8779.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hilbers C. W., Michiels P. J., Heus H. A. New developments in structure determination of pseudoknots. Biopolymers. 1998;48(2-3):137–153. doi: 10.1002/(SICI)1097-0282(1998)48:2<137::AID-BIP4>3.0.CO;2-H. [DOI] [PubMed] [Google Scholar]
  11. Hofacker I. L., Fekete M., Flamm C., Huynen M. A., Rauscher S., Stolorz P. E., Stadler P. F. Automatic detection of conserved RNA structure elements in complete RNA virus genomes. Nucleic Acids Res. 1998 Aug 15;26(16):3825–3836. doi: 10.1093/nar/26.16.3825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hoffman M. A., Palmenberg A. C. Revertant analysis of J-K mutations in the encephalomyocarditis virus internal ribosomal entry site detects an altered leader protein. J Virol. 1996 Sep;70(9):6425–6430. doi: 10.1128/jvi.70.9.6425-6430.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holbrook S. R., Cheong C., Tinoco I., Jr, Kim S. H. Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs. Nature. 1991 Oct 10;353(6344):579–581. doi: 10.1038/353579a0. [DOI] [PubMed] [Google Scholar]
  14. Ishii T., Shiroki K., Iwai A., Nomoto A. Identification of a new element for RNA replication within the internal ribosome entry site of poliovirus RNA. J Gen Virol. 1999 Apr;80(Pt 4):917–920. doi: 10.1099/0022-1317-80-4-917. [DOI] [PubMed] [Google Scholar]
  15. Jackson R. J., Kaminski A. Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA. 1995 Dec;1(10):985–1000. [PMC free article] [PubMed] [Google Scholar]
  16. Jacobson S. J., Konings D. A., Sarnow P. Biochemical and genetic evidence for a pseudoknot structure at the 3' terminus of the poliovirus RNA genome and its role in viral RNA amplification. J Virol. 1993 Jun;67(6):2961–2971. doi: 10.1128/jvi.67.6.2961-2971.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jang S. B., Hung L. W., Chi Y. I., Holbrook E. L., Carter R. J., Holbrook S. R. Structure of an RNA internal loop consisting of tandem C-A+ base pairs. Biochemistry. 1998 Aug 25;37(34):11726–11731. doi: 10.1021/bi980758j. [DOI] [PubMed] [Google Scholar]
  18. Kieft J. S., Zhou K., Jubin R., Murray M. G., Lau J. Y., Doudna J. A. The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J Mol Biol. 1999 Sep 24;292(3):513–529. doi: 10.1006/jmbi.1999.3095. [DOI] [PubMed] [Google Scholar]
  19. Klovins J., Berzins V., van Duin J. A long-range interaction in Qbeta RNA that bridges the thousand nucleotides between the M-site and the 3' end is required for replication. RNA. 1998 Aug;4(8):948–957. doi: 10.1017/s1355838298980177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Klump W. M., Bergmann I., Müller B. C., Ameis D., Kandolf R. Complete nucleotide sequence of infectious Coxsackievirus B3 cDNA: two initial 5' uridine residues are regained during plus-strand RNA synthesis. J Virol. 1990 Apr;64(4):1573–1583. doi: 10.1128/jvi.64.4.1573-1583.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kolk M. H., van der Graaf M., Wijmenga S. S., Pleij C. W., Heus H. A., Hilbers C. W. NMR structure of a classical pseudoknot: interplay of single- and double-stranded RNA. Science. 1998 Apr 17;280(5362):434–438. doi: 10.1126/science.280.5362.434. [DOI] [PubMed] [Google Scholar]
  22. Kolykhalov A. A., Feinstone S. M., Rice C. M. Identification of a highly conserved sequence element at the 3' terminus of hepatitis C virus genome RNA. J Virol. 1996 Jun;70(6):3363–3371. doi: 10.1128/jvi.70.6.3363-3371.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Le S. Y., Liu W. M., Maizel J. V., Jr Phylogenetic evidence for the improved RNA higher-order structure in internal ribosome entry sequences of HCV and pestiviruses. Virus Genes. 1998;17(3):279–295. doi: 10.1023/a:1008073905920. [DOI] [PubMed] [Google Scholar]
  24. Lee K., Varma S., SantaLucia J., Jr, Cunningham P. R. In vivo determination of RNA structure-function relationships: analysis of the 790 loop in ribosomal RNA. J Mol Biol. 1997 Jun 27;269(5):732–743. doi: 10.1006/jmbi.1997.1092. [DOI] [PubMed] [Google Scholar]
  25. Lück R., Steger G., Riesner D. Thermodynamic prediction of conserved secondary structure: application to the RRE element of HIV, the tRNA-like element of CMV and the mRNA of prion protein. J Mol Biol. 1996 May 24;258(5):813–826. doi: 10.1006/jmbi.1996.0289. [DOI] [PubMed] [Google Scholar]
  26. Massire C., Jaeger L., Westhof E. Derivation of the three-dimensional architecture of bacterial ribonuclease P RNAs from comparative sequence analysis. J Mol Biol. 1998 Jun 19;279(4):773–793. doi: 10.1006/jmbi.1998.1797. [DOI] [PubMed] [Google Scholar]
  27. Melchers W. J., Hoenderop J. G., Bruins Slot H. J., Pleij C. W., Pilipenko E. V., Agol V. I., Galama J. M. Kissing of the two predominant hairpin loops in the coxsackie B virus 3' untranslated region is the essential structural feature of the origin of replication required for negative-strand RNA synthesis. J Virol. 1997 Jan;71(1):686–696. doi: 10.1128/jvi.71.1.686-696.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mellits K. H., Meredith J. M., Rohll J. B., Evans D. J., Almond J. W. Binding of a cellular factor to the 3' untranslated region of the RNA genomes of entero- and rhinoviruses plays a role in virus replication. J Gen Virol. 1998 Jul;79(Pt 7):1715–1723. doi: 10.1099/0022-1317-79-7-1715. [DOI] [PubMed] [Google Scholar]
  29. Mirmomeni M. H., Hughes P. J., Stanway G. An RNA tertiary structure in the 3' untranslated region of enteroviruses is necessary for efficient replication. J Virol. 1997 Mar;71(3):2363–2370. doi: 10.1128/jvi.71.3.2363-2370.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pierangeli A., Bucci M., Pagnotti P., Degener A. M., Perez Bercoff R. Mutational analysis of the 3'-terminal extra-cistronic region of poliovirus RNA: secondary structure is not the only requirement for minus strand RNA replication. FEBS Lett. 1995 Nov 6;374(3):327–332. doi: 10.1016/0014-5793(95)01127-z. [DOI] [PubMed] [Google Scholar]
  31. Pilipenko E. V., Blinov V. M., Chernov B. K., Dmitrieva T. M., Agol V. I. Conservation of the secondary structure elements of the 5'-untranslated region of cardio- and aphthovirus RNAs. Nucleic Acids Res. 1989 Jul 25;17(14):5701–5711. doi: 10.1093/nar/17.14.5701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pilipenko E. V., Blinov V. M., Romanova L. I., Sinyakov A. N., Maslova S. V., Agol V. I. Conserved structural domains in the 5'-untranslated region of picornaviral genomes: an analysis of the segment controlling translation and neurovirulence. Virology. 1989 Feb;168(2):201–209. doi: 10.1016/0042-6822(89)90259-6. [DOI] [PubMed] [Google Scholar]
  33. Pilipenko E. V., Gmyl A. P., Maslova S. V., Belov G. A., Sinyakov A. N., Huang M., Brown T. D., Agol V. I. Starting window, a distinct element in the cap-independent internal initiation of translation on picornaviral RNA. J Mol Biol. 1994 Aug 19;241(3):398–414. doi: 10.1006/jmbi.1994.1516. [DOI] [PubMed] [Google Scholar]
  34. Pilipenko E. V., Gmyl A. P., Maslova S. V., Khitrina E. V., Agol V. I. Attenuation of Theiler's murine encephalomyelitis virus by modifications of the oligopyrimidine/AUG tandem, a host-dependent translational cis element. J Virol. 1995 Feb;69(2):864–870. doi: 10.1128/jvi.69.2.864-870.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Pilipenko E. V., Gmyl A. P., Maslova S. V., Svitkin Y. V., Sinyakov A. N., Agol V. I. Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus RNA. Cell. 1992 Jan 10;68(1):119–131. doi: 10.1016/0092-8674(92)90211-t. [DOI] [PubMed] [Google Scholar]
  36. Pilipenko E. V., Maslova S. V., Sinyakov A. N., Agol V. I. Towards identification of cis-acting elements involved in the replication of enterovirus and rhinovirus RNAs: a proposal for the existence of tRNA-like terminal structures. Nucleic Acids Res. 1992 Apr 11;20(7):1739–1745. doi: 10.1093/nar/20.7.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pilipenko E. V., Poperechny K. V., Maslova S. V., Melchers W. J., Slot H. J., Agol V. I. Cis-element, oriR, involved in the initiation of (-) strand poliovirus RNA: a quasi-globular multi-domain RNA structure maintained by tertiary ('kissing') interactions. EMBO J. 1996 Oct 1;15(19):5428–5436. [PMC free article] [PubMed] [Google Scholar]
  38. Robertson M. E., Seamons R. A., Belsham G. J. A selection system for functional internal ribosome entry site (IRES) elements: analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA. 1999 Sep;5(9):1167–1179. doi: 10.1017/s1355838299990301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rohll J. B., Moon D. H., Evans D. J., Almond J. W. The 3' untranslated region of picornavirus RNA: features required for efficient genome replication. J Virol. 1995 Dec;69(12):7835–7844. doi: 10.1128/jvi.69.12.7835-7844.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rust R. C., Ochs K., Meyer K., Beck E., Niepmann M. Interaction of eukaryotic initiation factor eIF4B with the internal ribosome entry site of foot-and-mouth disease virus is independent of the polypyrimidine tract-binding protein. J Virol. 1999 Jul;73(7):6111–6113. doi: 10.1128/jvi.73.7.6111-6113.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Schuster P., Stadler P. F., Renner A. RNA structures and folding: from conventional to new issues in structure predictions. Curr Opin Struct Biol. 1997 Apr;7(2):229–235. doi: 10.1016/s0959-440x(97)80030-9. [DOI] [PubMed] [Google Scholar]
  42. Smalle J., Kurepa J., Haegman M., Gielen J., Van Montagu M., Van Der Straeten D. The trihelix DNA-binding motif in higher plants is not restricted to the transcription factors GT-1 and GT-2. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3318–3322. doi: 10.1073/pnas.95.6.3318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Springer M. S., Douzery E. Secondary structure and patterns of evolution among mammalian mitochondrial 12S rRNA molecules. J Mol Evol. 1996 Oct;43(4):357–373. doi: 10.1007/BF02339010. [DOI] [PubMed] [Google Scholar]
  44. Stewart S. R., Semler B. L. RNA structure adjacent to the attenuation determinant in the 5'-non-coding region influences poliovirus viability. Nucleic Acids Res. 1998 Dec 1;26(23):5318–5326. doi: 10.1093/nar/26.23.5318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tinoco I., Jr, Bustamante C. How RNA folds. J Mol Biol. 1999 Oct 22;293(2):271–281. doi: 10.1006/jmbi.1999.3001. [DOI] [PubMed] [Google Scholar]
  46. Todd S., Nguyen J. H., Semler B. L. RNA-protein interactions directed by the 3' end of human rhinovirus genomic RNA. J Virol. 1995 Jun;69(6):3605–3614. doi: 10.1128/jvi.69.6.3605-3614.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Uhlenbeck O. C., Pardi A., Feigon J. RNA structure comes of age. Cell. 1997 Sep 5;90(5):833–840. doi: 10.1016/s0092-8674(00)80348-7. [DOI] [PubMed] [Google Scholar]
  48. Wang J., Bakkers J. M., Galama J. M., Bruins Slot H. J., Pilipenko E. V., Agol V. I., Melchers W. J. Structural requirements of the higher order RNA kissing element in the enteroviral 3'UTR. Nucleic Acids Res. 1999 Jan 15;27(2):485–490. doi: 10.1093/nar/27.2.485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wu M., Tinoco I., Jr RNA folding causes secondary structure rearrangement. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11555–11560. doi: 10.1073/pnas.95.20.11555. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES