Skip to main content
RNA logoLink to RNA
. 2000 Jul;6(7):1019–1030. doi: 10.1017/s1355838200000613

Junction phosphate is derived from the precursor in the tRNA spliced by the archaeon Haloferax volcanii cell extract.

L Zofallova 1, Y Guo 1, R Gupta 1
PMCID: PMC1369977  PMID: 10917597

Abstract

RNA splicing in archaea requires at least an endonuclease and a ligase, as is the case for the splicing of eukaryal nuclear tRNAs. Splicing endonucleases from archaea and eukarya are homologous, although they differ in subunit composition and substrate recognition properties. However, they all produce 2',3' cyclic phosphate and 5'-hydroxyl termini. An in vitro-transcribed, partial intron-deleted Haloferax volcanii elongator tRNA(Met) has been used to study splicing by H. volcanii cell extracts. Substrates and products were analyzed by nearest neighbor analyses using nuclease P1 and RNase T2, and fingerprinting analyses using acid-urea gels in the first dimension and gradient thin layer chromatography in the second dimension. The results suggest that 2',3' cyclic phosphate at the 3' end of the 5' exon is converted into the splice junction phosphate forming a 3',5'-phosphodiester linkage. This resembles the animal cell type systems where the junction phosphate preexists in the transcript, and differs from yeast type systems, where GTP is the source of junction phosphate.

Full Text

The Full Text of this article is available as a PDF (327.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abelson J., Trotta C. R., Li H. tRNA splicing. J Biol Chem. 1998 May 22;273(21):12685–12688. doi: 10.1074/jbc.273.21.12685. [DOI] [PubMed] [Google Scholar]
  2. Apostol B. L., Westaway S. K., Abelson J., Greer C. L. Deletion analysis of a multifunctional yeast tRNA ligase polypeptide. Identification of essential and dispensable functional domains. J Biol Chem. 1991 Apr 25;266(12):7445–7455. [PubMed] [Google Scholar]
  3. Arn E. A., Abelson J. N. The 2'-5' RNA ligase of Escherichia coli. Purification, cloning, and genomic disruption. J Biol Chem. 1996 Dec 6;271(49):31145–31153. doi: 10.1074/jbc.271.49.31145. [DOI] [PubMed] [Google Scholar]
  4. Attardi D. G., Margarit I., Tocchini-Valentini G. P. Structural alterations in mutant precursors of the yeast tRNALeu3 gene which behave as defective substrates for a highly purified splicing endoribonuclease. EMBO J. 1985 Dec 1;4(12):3289–3297. doi: 10.1002/j.1460-2075.1985.tb04079.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Belford H. G., Westaway S. K., Abelson J., Greer C. L. Multiple nucleotide cofactor use by yeast ligase in tRNA splicing. Evidence for independent ATP- and GTP-binding sites. J Biol Chem. 1993 Feb 5;268(4):2444–2450. [PubMed] [Google Scholar]
  6. Belfort M., Reaban M. E., Coetzee T., Dalgaard J. Z. Prokaryotic introns and inteins: a panoply of form and function. J Bacteriol. 1995 Jul;177(14):3897–3903. doi: 10.1128/jb.177.14.3897-3903.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Branch A. D., Benenfeld B. J., Robertson H. D. RNA fingerprinting. Methods Enzymol. 1989;180:130–154. doi: 10.1016/0076-6879(89)80098-9. [DOI] [PubMed] [Google Scholar]
  8. Bult C. J., White O., Olsen G. J., Zhou L., Fleischmann R. D., Sutton G. G., Blake J. A., FitzGerald L. M., Clayton R. A., Gocayne J. D. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996 Aug 23;273(5278):1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
  9. Burggraf S., Larsen N., Woese C. R., Stetter K. O. An intron within the 16S ribosomal RNA gene of the archaeon Pyrobaculum aerophilum. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2547–2550. doi: 10.1073/pnas.90.6.2547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Culver G. M., McCraith S. M., Zillmann M., Kierzek R., Michaud N., LaReau R. D., Turner D. H., Phizicky E. M. An NAD derivative produced during transfer RNA splicing: ADP-ribose 1"-2" cyclic phosphate. Science. 1993 Jul 9;261(5118):206–208. doi: 10.1126/science.8392224. [DOI] [PubMed] [Google Scholar]
  11. Dalgaard J. Z., Garrett R. A. Protein-coding introns from the 23S rRNA-encoding gene form stable circles in the hyperthermophilic archaeon Pyrobaculum organotrophum. Gene. 1992 Nov 2;121(1):103–110. doi: 10.1016/0378-1119(92)90167-n. [DOI] [PubMed] [Google Scholar]
  12. Daniels C. J., Gupta R., Doolittle W. F. Transcription and excision of a large intron in the tRNATrp gene of an archaebacterium, Halobacterium volcanii. J Biol Chem. 1985 Mar 10;260(5):3132–3134. [PubMed] [Google Scholar]
  13. Datta P. K., Hawkins L. K., Gupta R. Presence of an intron in elongator methionine-tRNA of Halobacterium volcanii. Can J Microbiol. 1989 Jan;35(1):189–194. doi: 10.1139/m89-029. [DOI] [PubMed] [Google Scholar]
  14. Di Nicola Negri E., Fabbri S., Bufardeci E., Baldi M. I., Gandini Attardi D., Mattoccia E., Tocchini-Valentini G. P. The eucaryal tRNA splicing endonuclease recognizes a tripartite set of RNA elements. Cell. 1997 Jun 13;89(6):859–866. doi: 10.1016/s0092-8674(00)80271-8. [DOI] [PubMed] [Google Scholar]
  15. Domdey H., Gross H. J. Gradient thin-layer chromatography of oligonucleotides on DEAE-cellulose: an alternative to homochromatography. Anal Biochem. 1979 Oct 1;98(2):346–352. doi: 10.1016/0003-2697(79)90152-0. [DOI] [PubMed] [Google Scholar]
  16. Fabbri S., Fruscoloni P., Bufardeci E., Di Nicola Negri E., Baldi M. I., Attardi D. G., Mattoccia E., Tocchini-Valentini G. P. Conservation of substrate recognition mechanisms by tRNA splicing endonucleases. Science. 1998 Apr 10;280(5361):284–286. doi: 10.1126/science.280.5361.284. [DOI] [PubMed] [Google Scholar]
  17. Filipowicz W., Konarska M., Gross H. J., Shatkin A. J. RNA 3'-terminal phosphate cyclase activity and RNA ligation in HeLa cell extract. Nucleic Acids Res. 1983 Mar 11;11(5):1405–1418. doi: 10.1093/nar/11.5.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Filipowicz W., Shatkin A. J. Origin of splice junction phosphate in tRNAs processed by HeLa cell extract. Cell. 1983 Feb;32(2):547–557. doi: 10.1016/0092-8674(83)90474-9. [DOI] [PubMed] [Google Scholar]
  19. Gegenheimer P., Gabius H. J., Peebles C. L., Abelson J. An RNA ligase from wheat germ which participates in transfer RNA splicing in vitro. J Biol Chem. 1983 Jul 10;258(13):8365–8373. [PubMed] [Google Scholar]
  20. Genschik P., Billy E., Swianiewicz M., Filipowicz W. The human RNA 3'-terminal phosphate cyclase is a member of a new family of proteins conserved in Eucarya, Bacteria and Archaea. EMBO J. 1997 May 15;16(10):2955–2967. doi: 10.1093/emboj/16.10.2955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gomes I., Gupta R. RNA splicing ligase activity in the archaeon Haloferax volcanii. Biochem Biophys Res Commun. 1997 Aug 28;237(3):588–594. doi: 10.1006/bbrc.1997.7193. [DOI] [PubMed] [Google Scholar]
  22. Greer C. L., Javor B., Abelson J. RNA ligase in bacteria: formation of a 2',5' linkage by an E. coli extract. Cell. 1983 Jul;33(3):899–906. doi: 10.1016/0092-8674(83)90032-6. [DOI] [PubMed] [Google Scholar]
  23. Greer C. L., Peebles C. L., Gegenheimer P., Abelson J. Mechanism of action of a yeast RNA ligase in tRNA splicing. Cell. 1983 Feb;32(2):537–546. doi: 10.1016/0092-8674(83)90473-7. [DOI] [PubMed] [Google Scholar]
  24. Gupta R. Halobacterium volcanii tRNAs. Identification of 41 tRNAs covering all amino acids, and the sequences of 33 class I tRNAs. J Biol Chem. 1984 Aug 10;259(15):9461–9471. [PubMed] [Google Scholar]
  25. Gäggeler H, Brüchle W, Brügger M, Schädel M, Sümmerer K, Wirth G, Kratz JV, Lerch M, Blaich T, Herrmann G. Production of cold target-like fragments in the reaction of 48Ca+248Cm. Phys Rev C Nucl Phys. 1986 Jun;33(6):1983–1987. doi: 10.1103/physrevc.33.1983. [DOI] [PubMed] [Google Scholar]
  26. Itoh T., Suzuki K., Nakase T. Occurrence of introns in the 16S rRNA genes of members of the genus Thermoproteus. Arch Microbiol. 1998 Sep;170(3):155–161. doi: 10.1007/s002030050628. [DOI] [PubMed] [Google Scholar]
  27. Kaine B. P., Gupta R., Woese C. R. Putative introns in tRNA genes of prokaryotes. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3309–3312. doi: 10.1073/pnas.80.11.3309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kawarabayasi Y., Hino Y., Horikawa H., Yamazaki S., Haikawa Y., Jin-no K., Takahashi M., Sekine M., Baba S., Ankai A. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 1999 Apr 30;6(2):83-101, 145-52. doi: 10.1093/dnares/6.2.83. [DOI] [PubMed] [Google Scholar]
  29. Kawarabayasi Y., Sawada M., Horikawa H., Haikawa Y., Hino Y., Yamamoto S., Sekine M., Baba S., Kosugi H., Hosoyama A. Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 1998 Apr 30;5(2):55–76. doi: 10.1093/dnares/5.2.55. [DOI] [PubMed] [Google Scholar]
  30. Kikuchi Y., Tyc K., Filipowicz W., Sänger H. L., Gross H. J. Circularization of linear viroid RNA via 2'-phosphomonoester, 3', 5'-phosphodiester bonds by a novel type of RNA ligase from wheat germ and Chlamydomonas. Nucleic Acids Res. 1982 Dec 11;10(23):7521–7529. doi: 10.1093/nar/10.23.7521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kjems J., Garrett R. A. Novel splicing mechanism for the ribosomal RNA intron in the archaebacterium Desulfurococcus mobilis. Cell. 1988 Aug 26;54(5):693–703. doi: 10.1016/s0092-8674(88)80014-x. [DOI] [PubMed] [Google Scholar]
  32. Kjems J., Garrett R. A. Ribosomal RNA introns in archaea and evidence for RNA conformational changes associated with splicing. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):439–443. doi: 10.1073/pnas.88.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kjems J., Jensen J., Olesen T., Garrett R. A. Comparison of transfer RNA and ribosomal RNA intron splicing in the extreme thermophile and archaebacterium Desulfurococcus mobilis. Can J Microbiol. 1989 Jan;35(1):210–214. doi: 10.1139/m89-033. [DOI] [PubMed] [Google Scholar]
  34. Kjems J., Leffers H., Olesen T., Garrett R. A. A unique tRNA intron in the variable loop of the extreme thermophile Thermofilum pendens and its possible evolutionary implications. J Biol Chem. 1989 Oct 25;264(30):17834–17837. [PubMed] [Google Scholar]
  35. Klenk H. P., Clayton R. A., Tomb J. F., White O., Nelson K. E., Ketchum K. A., Dodson R. J., Gwinn M., Hickey E. K., Peterson J. D. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature. 1997 Nov 27;390(6658):364–370. doi: 10.1038/37052. [DOI] [PubMed] [Google Scholar]
  36. Konarska M., Filipowicz W., Domdey H., Gross H. J. Formation of a 2'-phosphomonoester, 3',5'-phosphodiester linkage by a novel RNA ligase in wheat germ. Nature. 1981 Sep 10;293(5828):112–116. doi: 10.1038/293112a0. [DOI] [PubMed] [Google Scholar]
  37. Konarska M., Filipowicz W., Gross H. J. RNA ligation via 2'-phosphomonoester, 3'5'-phosphodiester linkage: requirement of 2',3'-cyclic phosphate termini and involvement of a 5'-hydroxyl polynucleotide kinase. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1474–1478. doi: 10.1073/pnas.79.5.1474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Laski F. A., Fire A. Z., RajBhandary U. L., Sharp P. A. Characterization of tRNA precursor splicing in mammalian extracts. J Biol Chem. 1983 Oct 10;258(19):11974–11980. [PubMed] [Google Scholar]
  39. Li H., Trotta C. R., Abelson J. Crystal structure and evolution of a transfer RNA splicing enzyme. Science. 1998 Apr 10;280(5361):279–284. doi: 10.1126/science.280.5361.279. [DOI] [PubMed] [Google Scholar]
  40. Lichtler A., Barrett N. L., Carmichael G. G. Simple, inexpensive preparation of T1/T2 ribonuclease suitable for use in RNase protection experiments. Biotechniques. 1992 Feb;12(2):231–232. [PubMed] [Google Scholar]
  41. Lykke-Andersen J., Garrett R. A. RNA-protein interactions of an archaeal homotetrameric splicing endoribonuclease with an exceptional evolutionary history. EMBO J. 1997 Oct 15;16(20):6290–6300. doi: 10.1093/emboj/16.20.6290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Lykke-Andersen J., Garrett R. A. Structural characteristics of the stable RNA introns of archaeal hyperthermophiles and their splicing junctions. J Mol Biol. 1994 Nov 11;243(5):846–855. doi: 10.1006/jmbi.1994.1687. [DOI] [PubMed] [Google Scholar]
  43. McCraith S. M., Phizicky E. M. An enzyme from Saccharomyces cerevisiae uses NAD+ to transfer the splice junction 2'-phosphate from ligated tRNA to an acceptor molecule. J Biol Chem. 1991 Jun 25;266(18):11986–11992. [PubMed] [Google Scholar]
  44. Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
  45. Nishikura K., De Robertis E. M. RNA processing in microinjected Xenopus oocytes. Sequential addition of base modifications in the spliced transfer RNA. J Mol Biol. 1981 Jan 15;145(2):405–420. doi: 10.1016/0022-2836(81)90212-6. [DOI] [PubMed] [Google Scholar]
  46. Nomura N., Sako Y., Uchida A. Molecular characterization and postsplicing fate of three introns within the single rRNA operon of the hyperthermophilic archaeon Aeropyrum pernix K1. J Bacteriol. 1998 Jul;180(14):3635–3643. doi: 10.1128/jb.180.14.3635-3643.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Peebles C. L., Gegenheimer P., Abelson J. Precise excision of intervening sequences from precursor tRNAs by a membrane-associated yeast endonuclease. Cell. 1983 Feb;32(2):525–536. doi: 10.1016/0092-8674(83)90472-5. [DOI] [PubMed] [Google Scholar]
  48. Perkins K. K., Furneaux H., Hurwitz J. Isolation and characterization of an RNA ligase from HeLa cells. Proc Natl Acad Sci U S A. 1985 Feb;82(3):684–688. doi: 10.1073/pnas.82.3.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Phizicky E. M., Greer C. L. Pre-tRNA splicing: variation on a theme or exception to the rule? Trends Biochem Sci. 1993 Jan;18(1):31–34. doi: 10.1016/0968-0004(93)90085-2. [DOI] [PubMed] [Google Scholar]
  50. Phizicky E. M., Schwartz R. C., Abelson J. Saccharomyces cerevisiae tRNA ligase. Purification of the protein and isolation of the structural gene. J Biol Chem. 1986 Feb 25;261(6):2978–2986. [PubMed] [Google Scholar]
  51. Reid C. E., Lazinski D. W. A host-specific function is required for ligation of a wide variety of ribozyme-processed RNAs. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):424–429. doi: 10.1073/pnas.97.1.424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Schwartz R. C., Greer C. L., Gegenheimer P., Abelson J. Enzymatic mechanism of an RNA ligase from wheat germ. J Biol Chem. 1983 Jul 10;258(13):8374–8383. [PubMed] [Google Scholar]
  53. Sidrauski C., Cox J. S., Walter P. tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell. 1996 Nov 1;87(3):405–413. doi: 10.1016/s0092-8674(00)81361-6. [DOI] [PubMed] [Google Scholar]
  54. Smith D. R., Doucette-Stamm L. A., Deloughery C., Lee H., Dubois J., Aldredge T., Bashirzadeh R., Blakely D., Cook R., Gilbert K. Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol. 1997 Nov;179(22):7135–7155. doi: 10.1128/jb.179.22.7135-7155.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Stange N., Gross H. J., Beier H. Wheat germ splicing endonuclease is highly specific for plant pre-tRNAs. EMBO J. 1988 Dec 1;7(12):3823–3828. doi: 10.1002/j.1460-2075.1988.tb03267.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Thompson L. D., Brandon L. D., Nieuwlandt D. T., Daniels C. J. Transfer RNA intron processing in the halophilic archaebacteria. Can J Microbiol. 1989 Jan;35(1):36–42. doi: 10.1139/m89-006. [DOI] [PubMed] [Google Scholar]
  57. Thompson L. D., Daniels C. J. Recognition of exon-intron boundaries by the Halobacterium volcanii tRNA intron endonuclease. J Biol Chem. 1990 Oct 25;265(30):18104–18111. [PubMed] [Google Scholar]
  58. Trotta C. R., Miao F., Arn E. A., Stevens S. W., Ho C. K., Rauhut R., Abelson J. N. The yeast tRNA splicing endonuclease: a tetrameric enzyme with two active site subunits homologous to the archaeal tRNA endonucleases. Cell. 1997 Jun 13;89(6):849–858. doi: 10.1016/s0092-8674(00)80270-6. [DOI] [PubMed] [Google Scholar]
  59. Tyc K., Kikuchi Y., Konarska M., Filipowicz W., Gross H. J. Ligation of endogenous tRNA 3' half molecules to their corresponding 5' halves via 2'-phosphomonoester,3',5'-phosphodiester bonds in extracts of Chlamydomonas. EMBO J. 1983;2(4):605–610. doi: 10.1002/j.1460-2075.1983.tb01470.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Westaway S. K., Belford H. G., Apostol B. L., Abelson J., Greer C. L. Novel activity of a yeast ligase deletion polypeptide. Evidence for GTP-dependent tRNA splicing. J Biol Chem. 1993 Feb 5;268(4):2435–2443. [PubMed] [Google Scholar]
  61. Wich G., Leinfelder W., Böck A. Genes for stable RNA in the extreme thermophile Thermoproteus tenax: introns and transcription signals. EMBO J. 1987 Feb;6(2):523–528. doi: 10.1002/j.1460-2075.1987.tb04784.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Woese C. R., Kandler O., Wheelis M. L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Xu Q., Teplow D., Lee T. D., Abelson J. Domain structure in yeast tRNA ligase. Biochemistry. 1990 Jul 3;29(26):6132–6138. doi: 10.1021/bi00478a004. [DOI] [PubMed] [Google Scholar]
  64. Zillmann M., Gorovsky M. A., Phizicky E. M. Conserved mechanism of tRNA splicing in eukaryotes. Mol Cell Biol. 1991 Nov;11(11):5410–5416. doi: 10.1128/mcb.11.11.5410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Zillmann M., Gorovsky M. A., Phizicky E. M. HeLa cells contain a 2'-phosphate-specific phosphotransferase similar to a yeast enzyme implicated in tRNA splicing. J Biol Chem. 1992 May 25;267(15):10289–10294. [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES