Abstract
The tRNA 3' end contains the conserved CCA sequence at the 74-76 positions. The CCA sequence is synthesized and maintained by the CCA-adding enzymes. The specificity of the Escherichia coli enzyme at each of the 74-76 positions was investigated using synthetic minihelix substrates that contain permuted 3' ends. Results here indicate that the enzyme has the ability to synthesize unusual 3' ends. When incubated with CTP alone, the enzyme catalyzed the addition of C74, C75, C76, and multiple Cs. Although the addition of C74 and C75 was as expected, that of C76 and multiple Cs was not. In particular, the addition of C76 generated CCC, which would have conflicted with the biological role of the enzyme. However, the presence of ATP prevented the synthesis of CCC and completely switched the specificity to CCA. The presence of ATP also had an inhibitory effect on the synthesis of multiple Cs. Thus, the E. coli CCA enzyme can be a poly(C) polymerase but its synthesis of poly(C) is regulated by the presence of ATP. These features led to a model of CCA synthesis that is independent of a nucleic acid template. The synthesis of poly(C) by the CCA-adding enzyme is reminiscent of that of poly(A) by poly(A) polymerase and it provides a functional rationale for the close sequence relationship between these two enzymes in the family of nucleotidyltransferases.
Full Text
The Full Text of this article is available as a PDF (720.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aebi M., Kirchner G., Chen J. Y., Vijayraghavan U., Jacobson A., Martin N. C., Abelson J. Isolation of a temperature-sensitive mutant with an altered tRNA nucleotidyltransferase and cloning of the gene encoding tRNA nucleotidyltransferase in the yeast Saccharomyces cerevisiae. J Biol Chem. 1990 Sep 25;265(27):16216–16220. [PubMed] [Google Scholar]
- Cao G. J., Sarkar N. Identification of the gene for an Escherichia coli poly(A) polymerase. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10380–10384. doi: 10.1073/pnas.89.21.10380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheetham G. M., Steitz T. A. Structure of a transcribing T7 RNA polymerase initiation complex. Science. 1999 Dec 17;286(5448):2305–2309. doi: 10.1126/science.286.5448.2305. [DOI] [PubMed] [Google Scholar]
- Davies J. F., 2nd, Almassy R. J., Hostomska Z., Ferre R. A., Hostomsky Z. 2.3 A crystal structure of the catalytic domain of DNA polymerase beta. Cell. 1994 Mar 25;76(6):1123–1133. doi: 10.1016/0092-8674(94)90388-3. [DOI] [PubMed] [Google Scholar]
- Deutscher M. P. Reactions at the 3' terminus of transfer ribonucleic acid. 3. Catalytic properties of two purified rabbit liver transfer ribonucleic acid nucleotidyl transferases. J Biol Chem. 1972 Jan 25;247(2):459–468. [PubMed] [Google Scholar]
- Deutscher M. P. Reactions at the 3' terminus of transfer ribonucleic acid. VII. Anomalous adenosine monophosphate incorporation catalyzed by rabbit liver transfer ribonucleic acid nucleotidyltransferase. J Biol Chem. 1973 May 10;248(9):3116–3121. [PubMed] [Google Scholar]
- Deutscher M. P. Reactions at the 3' terminus of transfer ribonucleic aid. IV. Extents of normal and anomalous nucleotide incorporation catalyzed by transfer ribonucleic acid nucleotidyltransferase. J Biol Chem. 1972 Jan 25;247(2):469–480. [PubMed] [Google Scholar]
- Deutscher M. P. Reactions at the 3' terminus of transfer ribonucleic aid. IV. Extents of normal and anomalous nucleotide incorporation catalyzed by transfer ribonucleic acid nucleotidyltransferase. J Biol Chem. 1972 Jan 25;247(2):469–480. [PubMed] [Google Scholar]
- Deutscher M. P. Reactions of the 3' terminus of transfer ribonucleic acid. VI. Properties of the poly(C) polymerase activity associated with rabbit liver transfer ribonucleic acid nucleotidyltransferase. J Biol Chem. 1973 May 10;248(9):3108–3115. [PubMed] [Google Scholar]
- Eger B. T., Benkovic S. J. Minimal kinetic mechanism for misincorporation by DNA polymerase I (Klenow fragment). Biochemistry. 1992 Sep 29;31(38):9227–9236. doi: 10.1021/bi00153a016. [DOI] [PubMed] [Google Scholar]
- Frey M. W., Sowers L. C., Millar D. P., Benkovic S. J. The nucleotide analog 2-aminopurine as a spectroscopic probe of nucleotide incorporation by the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase. Biochemistry. 1995 Jul 18;34(28):9185–9192. doi: 10.1021/bi00028a031. [DOI] [PubMed] [Google Scholar]
- Giegé R. Interplay of tRNA-like structures from plant viral RNAs with partners of the translation and replication machineries. Proc Natl Acad Sci U S A. 1996 Oct 29;93(22):12078–12081. doi: 10.1073/pnas.93.22.12078. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamann C. S., Hou Y. M. Enzymatic aminoacylation of tRNA acceptor stem helices with cysteine is dependent on a single nucleotide. Biochemistry. 1995 May 16;34(19):6527–6532. doi: 10.1021/bi00019a034. [DOI] [PubMed] [Google Scholar]
- He L., Söderbom F., Wagner E. G., Binnie U., Binns N., Masters M. PcnB is required for the rapid degradation of RNAI, the antisense RNA that controls the copy number of ColE1-related plasmids. Mol Microbiol. 1993 Sep;9(6):1131–1142. doi: 10.1111/j.1365-2958.1993.tb01243.x. [DOI] [PubMed] [Google Scholar]
- Hegg L. A., Kou M., Thurlow D. L. Recognition of the tRNA-like structure in tobacco mosaic viral RNA by ATP/CTP:tRNA nucleotidyltransferases from Escherichia coli and Saccharomyces cerevisiae. J Biol Chem. 1990 Oct 15;265(29):17441–17445. [PubMed] [Google Scholar]
- Holm L., Sander C. DNA polymerase beta belongs to an ancient nucleotidyltransferase superfamily. Trends Biochem Sci. 1995 Sep;20(9):345–347. doi: 10.1016/s0968-0004(00)89071-4. [DOI] [PubMed] [Google Scholar]
- Hou Y. M., Lipman R. S., Zarutskie J. A. A tRNA circularization assay: evidence for the variation of the conformation of the CCA end. RNA. 1998 Jul;4(7):733–738. doi: 10.1017/s1355838298980281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hou Y. M., Westhof E., Giegé R. An unusual RNA tertiary interaction has a role for the specific aminoacylation of a transfer RNA. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6776–6780. doi: 10.1073/pnas.90.14.6776. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lund E., Dahlberg J. E. Proofreading and aminoacylation of tRNAs before export from the nucleus. Science. 1998 Dec 11;282(5396):2082–2085. doi: 10.1126/science.282.5396.2082. [DOI] [PubMed] [Google Scholar]
- Maizels N., Weiner A. M. Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6729–6734. doi: 10.1073/pnas.91.15.6729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin G., Keller W. Mutational analysis of mammalian poly(A) polymerase identifies a region for primer binding and catalytic domain, homologous to the family X polymerases, and to other nucleotidyltransferases. EMBO J. 1996 May 15;15(10):2593–2603. [PMC free article] [PubMed] [Google Scholar]
- Masiakowski P., Deutscher M. P. Dissection of the active site of rabbit liver tRNA nucleotidyltransferase. Specificity and properties of subsites for donor nucleotide triphosphates. J Biol Chem. 1980 Dec 10;255(23):11240–11246. [PubMed] [Google Scholar]
- Masters M., March J. B., Oliver I. R., Collins J. F. A possible role for the pcnB gene product of Escherichia coli in modulating RNA: RNA interactions. Mol Gen Genet. 1990 Jan;220(2):341–344. doi: 10.1007/BF00260507. [DOI] [PubMed] [Google Scholar]
- O'Connor M., Willis N. M., Bossi L., Gesteland R. F., Atkins J. F. Functional tRNAs with altered 3' ends. EMBO J. 1993 Jun;12(6):2559–2566. doi: 10.1002/j.1460-2075.1993.tb05911.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puglisi E. V., Puglisi J. D., Williamson J. R., RajBhandary U. L. NMR analysis of tRNA acceptor stem microhelices: discriminator base change affects tRNA conformation at the 3' end. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11467–11471. doi: 10.1073/pnas.91.24.11467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quintana-Hau J. D., Uribe-Luna S., Espinosa-Lara M., Maldonado-Rodríguez R., Logsdon N., Beattie K. L. Construction and expression of a chimeric gene encoding human terminal deoxynucleotidyltransferase and DNA polymerase beta. Gene. 1995 Oct 3;163(2):289–294. doi: 10.1016/0378-1119(95)00291-d. [DOI] [PubMed] [Google Scholar]
- Rao A. L., Dreher T. W., Marsh L. E., Hall T. C. Telomeric function of the tRNA-like structure of brome mosaic virus RNA. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5335–5339. doi: 10.1073/pnas.86.14.5335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reuven N. B., Zhou Z., Deutscher M. P. Functional overlap of tRNA nucleotidyltransferase, poly(A) polymerase I, and polynucleotide phosphorylase. J Biol Chem. 1997 Dec 26;272(52):33255–33259. doi: 10.1074/jbc.272.52.33255. [DOI] [PubMed] [Google Scholar]
- Sakon J., Liao H. H., Kanikula A. M., Benning M. M., Rayment I., Holden H. M. Molecular structure of kanamycin nucleotidyltransferase determined to 3.0-A resolution. Biochemistry. 1993 Nov 16;32(45):11977–11984. doi: 10.1021/bi00096a006. [DOI] [PubMed] [Google Scholar]
- Sawaya M. R., Pelletier H., Kumar A., Wilson S. H., Kraut J. Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science. 1994 Jun 24;264(5167):1930–1935. doi: 10.1126/science.7516581. [DOI] [PubMed] [Google Scholar]
- Shanmugam K., Hanic-Joyce P. J., Joyce P. B. Purification and characterization of a tRNA nucleotidyltransferase from Lupinus albus and functional complementation of a yeast mutation by corresponding cDNA. Plant Mol Biol. 1996 Jan;30(2):281–295. doi: 10.1007/BF00020114. [DOI] [PubMed] [Google Scholar]
- Shi P. Y., Maizels N., Weiner A. M. CCA addition by tRNA nucleotidyltransferase: polymerization without translocation? EMBO J. 1998 Jun 1;17(11):3197–3206. doi: 10.1093/emboj/17.11.3197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shi P. Y., Weiner A. M., Maizels N. A top-half tDNA minihelix is a good substrate for the eubacterial CCA-adding enzyme. RNA. 1998 Mar;4(3):276–284. [PMC free article] [PubMed] [Google Scholar]
- Spacciapoli P., Doviken L., Mulero J. J., Thurlow D. L. Recognition of tRNA by the enzyme ATP/CTP:tRNA nucleotidyltransferase. Interference by nucleotides modified with diethyl pyrocarbonate or hydrazine. J Biol Chem. 1989 Mar 5;264(7):3799–3805. [PubMed] [Google Scholar]
- Sprinzl M., Horn C., Brown M., Ioudovitch A., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1998 Jan 1;26(1):148–153. doi: 10.1093/nar/26.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yap L. P., Stehlin C., Musier-Forsyth K. Use of semi-synthetic transfer RNAs to probe molecular recognition by Escherichia coli proline-tRNA synthetase. Chem Biol. 1995 Oct;2(10):661–666. doi: 10.1016/1074-5521(95)90029-2. [DOI] [PubMed] [Google Scholar]
- Yong Y., Romano L. J. Nucleotide and DNA-induced conformational changes in the bacteriophage T7 gene 4 protein. J Biol Chem. 1995 Oct 13;270(41):24509–24517. doi: 10.1074/jbc.270.41.24509. [DOI] [PubMed] [Google Scholar]
- Yue D., Maizels N., Weiner A. M. CCA-adding enzymes and poly(A) polymerases are all members of the same nucleotidyltransferase superfamily: characterization of the CCA-adding enzyme from the archaeal hyperthermophile Sulfolobus shibatae. RNA. 1996 Sep;2(9):895–908. [PMC free article] [PubMed] [Google Scholar]
- Yue D., Weiner A. M., Maizels N. The CCA-adding enzyme has a single active site. J Biol Chem. 1998 Nov 6;273(45):29693–29700. doi: 10.1074/jbc.273.45.29693. [DOI] [PubMed] [Google Scholar]
- Zhu L., Deutscher M. P. tRNA nucleotidyltransferase is not essential for Escherichia coli viability. EMBO J. 1987 Aug;6(8):2473–2477. doi: 10.1002/j.1460-2075.1987.tb02528.x. [DOI] [PMC free article] [PubMed] [Google Scholar]