Skip to main content
RNA logoLink to RNA
. 2000 Jul;6(7):1069–1076. doi: 10.1017/s1355838200000297

Genetic interference in Trypanosoma brucei by heritable and inducible double-stranded RNA.

H Shi 1, A Djikeng 1, T Mark 1, E Wirtz 1, C Tschudi 1, E Ullu 1
PMCID: PMC1369981  PMID: 10917601

Abstract

The use of double-stranded RNA (dsRNA) to disrupt gene expression has become a powerful method of achieving RNA interference (RNAi) in a wide variety of organisms. However, in Trypanosoma brucei this tool is restricted to transient interference, because the dsRNA is not stably maintained and its effects are diminished and eventually lost during cellular division. Here, we show that genetic interference by dsRNA can be achieved in a heritable and inducible fashion. To show this, we established stable cell lines expressing dsRNA in the form of stem-loop structures under the control of a tetracycline-inducible promoter. Targeting a-tubulin and actin mRNA resulted in potent and specific mRNA degradation as previously observed in transient interference. Surprisingly, 10-fold down regulation of actin mRNA was not fatal to trypanosomes. This type of approach could be applied to study RNAi in other organisms that are difficult to microinject or electroporate. Furthermore, to quickly probe the consequences of RNAi for a given gene we established a highly efficient in vivo T7 RNA polymerase system for expression of dsRNA. Using the alpha-tubulin test system we obtained greater than 98% transfection efficiency and the RNAi response lasted at least two to three cell generations. These new developments make it possible to initiate the molecular dissection of RNAi both biochemically and genetically.

Full Text

The Full Text of this article is available as a PDF (398.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carruthers V. B., Cross G. A. High-efficiency clonal growth of bloodstream- and insect-form Trypanosoma brucei on agarose plates. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8818–8821. doi: 10.1073/pnas.89.18.8818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cogoni C., Irelan J. T., Schumacher M., Schmidhauser T. J., Selker E. U., Macino G. Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation. EMBO J. 1996 Jun 17;15(12):3153–3163. [PMC free article] [PubMed] [Google Scholar]
  3. Cogoni C., Macino G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature. 1999 May 13;399(6732):166–169. doi: 10.1038/20215. [DOI] [PubMed] [Google Scholar]
  4. Cogoni C., Macino G. Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science. 1999 Dec 17;286(5448):2342–2344. doi: 10.1126/science.286.5448.2342. [DOI] [PubMed] [Google Scholar]
  5. Deflorin J., Rudolf M., Seebeck T. The major components of the paraflagellar rod of Trypanosoma brucei are two similar, but distinct proteins which are encoded by two different gene loci. J Biol Chem. 1994 Nov 18;269(46):28745–28751. [PubMed] [Google Scholar]
  6. Dobrowolski J. M., Sibley L. D. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell. 1996 Mar 22;84(6):933–939. doi: 10.1016/s0092-8674(00)81071-5. [DOI] [PubMed] [Google Scholar]
  7. Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998 Feb 19;391(6669):806–811. doi: 10.1038/35888. [DOI] [PubMed] [Google Scholar]
  8. Ketting R. F., Haverkamp T. H., van Luenen H. G., Plasterk R. H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell. 1999 Oct 15;99(2):133–141. doi: 10.1016/s0092-8674(00)81645-1. [DOI] [PubMed] [Google Scholar]
  9. Lohmann J. U., Endl I., Bosch T. C. Silencing of developmental genes in Hydra. Dev Biol. 1999 Oct 1;214(1):211–214. doi: 10.1006/dbio.1999.9407. [DOI] [PubMed] [Google Scholar]
  10. Misquitta L., Paterson B. M. Targeted disruption of gene function in Drosophila by RNA interference (RNA-i): a role for nautilus in embryonic somatic muscle formation. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1451–1456. doi: 10.1073/pnas.96.4.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mortara R. A. Studies on trypanosomatid actin. I. Immunochemical and biochemical identification. J Protozool. 1989 Jan-Feb;36(1):8–13. doi: 10.1111/j.1550-7408.1989.tb02666.x. [DOI] [PubMed] [Google Scholar]
  12. Ngô H., Tschudi C., Gull K., Ullu E. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14687–14692. doi: 10.1073/pnas.95.25.14687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sánchez Alvarado A., Newmark P. A. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5049–5054. doi: 10.1073/pnas.96.9.5049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tabara H., Grishok A., Mello C. C. RNAi in C. elegans: soaking in the genome sequence. Science. 1998 Oct 16;282(5388):430–431. doi: 10.1126/science.282.5388.430. [DOI] [PubMed] [Google Scholar]
  15. Tabara H., Sarkissian M., Kelly W. G., Fleenor J., Grishok A., Timmons L., Fire A., Mello C. C. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell. 1999 Oct 15;99(2):123–132. doi: 10.1016/s0092-8674(00)81644-x. [DOI] [PubMed] [Google Scholar]
  16. Timmons L., Fire A. Specific interference by ingested dsRNA. Nature. 1998 Oct 29;395(6705):854–854. doi: 10.1038/27579. [DOI] [PubMed] [Google Scholar]
  17. Wassenegger M., Pélissier T. A model for RNA-mediated gene silencing in higher plants. Plant Mol Biol. 1998 May;37(2):349–362. doi: 10.1023/a:1005946720438. [DOI] [PubMed] [Google Scholar]
  18. Wirtz E., Clayton C. Inducible gene expression in trypanosomes mediated by a prokaryotic repressor. Science. 1995 May 26;268(5214):1179–1183. doi: 10.1126/science.7761835. [DOI] [PubMed] [Google Scholar]
  19. Wirtz E., Hartmann C., Clayton C. Gene expression mediated by bacteriophage T3 and T7 RNA polymerases in transgenic trypanosomes. Nucleic Acids Res. 1994 Sep 25;22(19):3887–3894. doi: 10.1093/nar/22.19.3887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wirtz E., Hoek M., Cross G. A. Regulated processive transcription of chromatin by T7 RNA polymerase in Trypanosoma brucei. Nucleic Acids Res. 1998 Oct 15;26(20):4626–4634. doi: 10.1093/nar/26.20.4626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wirtz E., Leal S., Ochatt C., Cross G. A. A tightly regulated inducible expression system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma brucei. Mol Biochem Parasitol. 1999 Mar 15;99(1):89–101. doi: 10.1016/s0166-6851(99)00002-x. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES