Skip to main content
RNA logoLink to RNA
. 2000 Aug;6(8):1131–1141. doi: 10.1017/s1355838200992100

tRNA determinants for transcription antitermination of the Bacillus subtilis tyrS gene.

F J Grundy 1, J A Collins 1, S M Rollins 1, T M Henkin 1
PMCID: PMC1369987  PMID: 10943892

Abstract

Transcriptional regulation of the T box family of aminoacyl-tRNA synthetase and amino acid biosynthesis genes in Gram-positive bacteria is mediated by a conserved transcription antitermination system, in which readthrough of a termination site in the leader region of the mRNA is directed by a specific interaction with the cognate uncharged tRNA. The specificity of this interaction is determined in part by pairing of the anticodon of the tRNA with a "specifier sequence" in the leader, a codon representing the appropriate amino acid, as well as by pairing of the acceptor end of the tRNA with an unpaired region of the antiterminator. Previous studies have indicated that although these interactions are necessary for antitermination, they are unlikely to be sufficient. In the current study, the effect of multiple mutations in tRNA(Tyr) on readthrough of the tyrS leader region terminator, independent of other tRNA functions, was assessed using a system for in vivo expression of pools of tRNA variants; this system may be generally useful for in vivo expression of RNAs with defined end points. Although alterations in helical regions of tRNA(Tyr) that did not perturb base pairing were generally permitted, substitutions affecting conserved features of tRNAs were not. The long variable arm of tRNA(Tyr) could be replaced by either a short variable arm or a long insertion of a stable stem-loop structure. These results indicate that the tRNA-leader RNA interaction is highly constrained, and is likely to involve recognition of the overall tertiary structure of the tRNA.

Full Text

The Full Text of this article is available as a PDF (689.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bedouelle H., Guez-Ivanier V., Nageotte R. Discrimination between transfer-RNAs by tyrosyl-tRNA synthetase. Biochimie. 1993;75(12):1099–1108. doi: 10.1016/0300-9084(93)90009-h. [DOI] [PubMed] [Google Scholar]
  2. Condon C., Grunberg-Manago M., Putzer H. Aminoacyl-tRNA synthetase gene regulation in Bacillus subtilis. Biochimie. 1996;78(6):381–389. doi: 10.1016/0300-9084(96)84744-4. [DOI] [PubMed] [Google Scholar]
  3. Francklyn C., Schimmel P. Aminoacylation of RNA minihelices with alanine. Nature. 1989 Feb 2;337(6206):478–481. doi: 10.1038/337478a0. [DOI] [PubMed] [Google Scholar]
  4. Garrity D. B., Zahler S. A. Mutations in the gene for a tRNA that functions as a regulator of a transcriptional attenuator in Bacillus subtilis. Genetics. 1994 Jul;137(3):627–636. doi: 10.1093/genetics/137.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Giegé R., Puglisi J. D., Florentz C. tRNA structure and aminoacylation efficiency. Prog Nucleic Acid Res Mol Biol. 1993;45:129–206. doi: 10.1016/s0079-6603(08)60869-7. [DOI] [PubMed] [Google Scholar]
  6. Grundy F. J., Henkin T. M. Cloning and analysis of the Bacillus subtilis rpsD gene, encoding ribosomal protein S4. J Bacteriol. 1990 Nov;172(11):6372–6379. doi: 10.1128/jb.172.11.6372-6379.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grundy F. J., Henkin T. M. Conservation of a transcription antitermination mechanism in aminoacyl-tRNA synthetase and amino acid biosynthesis genes in gram-positive bacteria. J Mol Biol. 1994 Jan 14;235(2):798–804. doi: 10.1006/jmbi.1994.1038. [DOI] [PubMed] [Google Scholar]
  8. Grundy F. J., Henkin T. M. Inducible amber suppressor for Bacillus subtilis. J Bacteriol. 1994 Apr;176(7):2108–2110. doi: 10.1128/jb.176.7.2108-2110.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grundy F. J., Henkin T. M. tRNA as a positive regulator of transcription antitermination in B. subtilis. Cell. 1993 Aug 13;74(3):475–482. doi: 10.1016/0092-8674(93)80049-k. [DOI] [PubMed] [Google Scholar]
  10. Grundy F. J., Hodil S. E., Rollins S. M., Henkin T. M. Specificity of tRNA-mRNA interactions in Bacillus subtilis tyrS antitermination. J Bacteriol. 1997 Apr;179(8):2587–2594. doi: 10.1128/jb.179.8.2587-2594.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grundy F. J., Rollins S. M., Henkin T. M. Interaction between the acceptor end of tRNA and the T box stimulates antitermination in the Bacillus subtilis tyrS gene: a new role for the discriminator base. J Bacteriol. 1994 Aug;176(15):4518–4526. doi: 10.1128/jb.176.15.4518-4526.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Henkin T. M., Chambliss G. H. Genetic mapping of a mutation causing an alteration in Bacillus subtilis ribosomal protein S4. Mol Gen Genet. 1984;193(2):364–369. doi: 10.1007/BF00330694. [DOI] [PubMed] [Google Scholar]
  13. Henkin T. M., Glass B. L., Grundy F. J. Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes. J Bacteriol. 1992 Feb;174(4):1299–1306. doi: 10.1128/jb.174.4.1299-1306.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Henkin T. M. tRNA-directed transcription antitermination. Mol Microbiol. 1994 Aug;13(3):381–387. doi: 10.1111/j.1365-2958.1994.tb00432.x. [DOI] [PubMed] [Google Scholar]
  15. Kirsebom L. A., Svärd S. G. The kinetics and specificity of cleavage by RNase P is mainly dependent on the structure of the amino acid acceptor stem. Nucleic Acids Res. 1992 Feb 11;20(3):425–432. doi: 10.1093/nar/20.3.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Luo D., Leautey J., Grunberg-Manago M., Putzer H. Structure and regulation of expression of the Bacillus subtilis valyl-tRNA synthetase gene. J Bacteriol. 1997 Apr;179(8):2472–2478. doi: 10.1128/jb.179.8.2472-2478.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Marta P. T., Ladner R. D., Grandoni J. A. A CUC triplet confers leucine-dependent regulation of the Bacillus subtilis ilv-leu operon. J Bacteriol. 1996 Apr;178(7):2150–2153. doi: 10.1128/jb.178.7.2150-2153.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McClain W. H., Gabriel K., Bhattacharya S., Jou Y. Y., Schneider J. Functional compensation by particular nucleotide substitutions of a critical G*U wobble base-pair during aminoacylation of transfer RNA. J Mol Biol. 1999 Mar 5;286(4):1025–1032. doi: 10.1006/jmbi.1999.2542. [DOI] [PubMed] [Google Scholar]
  19. McClain W. H., Wilson J. H., Seidman J. G. Genetic analysis of structure and function in phage T4 tRNASer. J Mol Biol. 1988 Oct 5;203(3):549–553. doi: 10.1016/0022-2836(88)90191-x. [DOI] [PubMed] [Google Scholar]
  20. Puglisi J. D., Pütz J., Florentz C., Giegé R. Influence of tRNA tertiary structure and stability on aminoacylation by yeast aspartyl-tRNA synthetase. Nucleic Acids Res. 1993 Jan 11;21(1):41–49. doi: 10.1093/nar/21.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Putzer H., Laalami S., Brakhage A. A., Condon C., Grunberg-Manago M. Aminoacyl-tRNA synthetase gene regulation in Bacillus subtilis: induction, repression and growth-rate regulation. Mol Microbiol. 1995 May;16(4):709–718. doi: 10.1111/j.1365-2958.1995.tb02432.x. [DOI] [PubMed] [Google Scholar]
  22. Ramesh V., Varshney U., Rajbhandary U. L. Intragenic suppression in tRNA: evidence for crosstalk between the D and the T stems. RNA. 1997 Nov;3(11):1220–1232. [PMC free article] [PubMed] [Google Scholar]
  23. Sampson J. R., DiRenzo A. B., Behlen L. S., Uhlenbeck O. C. Role of the tertiary nucleotides in the interaction of yeast phenylalanine tRNA with its cognate synthetase. Biochemistry. 1990 Mar 13;29(10):2523–2532. doi: 10.1021/bi00462a014. [DOI] [PubMed] [Google Scholar]
  24. Sprinzl M., Horn C., Brown M., Ioudovitch A., Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1998 Jan 1;26(1):148–153. doi: 10.1093/nar/26.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stragier P., Bonamy C., Karmazyn-Campelli C. Processing of a sporulation sigma factor in Bacillus subtilis: how morphological structure could control gene expression. Cell. 1988 Mar 11;52(5):697–704. doi: 10.1016/0092-8674(88)90407-2. [DOI] [PubMed] [Google Scholar]
  26. Wang S., Huber P. W., Cui M., Czarnik A. W., Mei H. Y. Binding of neomycin to the TAR element of HIV-1 RNA induces dissociation of Tat protein by an allosteric mechanism. Biochemistry. 1998 Apr 21;37(16):5549–5557. doi: 10.1021/bi972808a. [DOI] [PubMed] [Google Scholar]
  27. Wu J. J., Howard M. G., Piggot P. J. Regulation of transcription of the Bacillus subtilis spoIIA locus. J Bacteriol. 1989 Feb;171(2):692–698. doi: 10.1128/jb.171.2.692-698.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES