Skip to main content
RNA logoLink to RNA
. 2000 Sep;6(9):1212–1225. doi: 10.1017/s1355838200000881

Solution structure and metal-ion binding of the P4 element from bacterial RNase P RNA.

M Schmitz 1, I Tinoco Jr 1
PMCID: PMC1369995  PMID: 10999599

Abstract

We determined the solution structure of two 27-nt RNA hairpins and their complexes with cobalt(III)-hexammine (Co(NH3)3+(6)) by NMR spectroscopy. The RNA hairpins used in this study are the P4 region from Escherichia coli RNase P RNA and a C-to-U mutant that confers altered divalent metal-ion specificity (Ca2+ replaces Mg2+) for catalytic activity of this ribozyme. Co(NH3)3+(6) is a useful spectroscopic probe for Mg(H2O)2+(6)-binding sites because both complexes have octahedral symmetry and have similar radii. The thermodynamics of binding to both RNA hairpins was studied using chemical shift changes upon titration with Mg2+, Ca2+, and Co(NH3)3+(6). We found that the equilibrium binding constants for each of the metal ions was essentially unchanged when the P4 model RNA hairpin was mutated, although the NMR structures show that the RNA hairpins adopt different conformations. In the C-to-U mutant a C.G base pair is replaced by U.G, and the conserved bulged uridine in the P4 wild-type stem shifts in the 3' direction by 1 nt. Intermolecular NOE cross-peaks between Co(NH3)3+(6) and RNA protons were used to locate the site of Co(NH3)3+(6) binding to both RNA hairpins. The metal ion binds in the major groove near a bulge loop, but is shifted 5' by more than 1 bp in the mutant. The change of the metal-ion binding site provides a possible explanation for changes in catalytic activity of the mutant RNase P in the presence of Ca2+.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain F. H., Varani G. Divalent metal ion binding to a conserved wobble pair defining the upstream site of cleavage of group I self-splicing introns. Nucleic Acids Res. 1995 Feb 11;23(3):341–350. doi: 10.1093/nar/23.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Batey R. T., Battiste J. L., Williamson J. R. Preparation of isotopically enriched RNAs for heteronuclear NMR. Methods Enzymol. 1995;261:300–322. doi: 10.1016/s0076-6879(95)61015-4. [DOI] [PubMed] [Google Scholar]
  3. Batey R. T., Inada M., Kujawinski E., Puglisi J. D., Williamson J. R. Preparation of isotopically labeled ribonucleotides for multidimensional NMR spectroscopy of RNA. Nucleic Acids Res. 1992 Sep 11;20(17):4515–4523. doi: 10.1093/nar/20.17.4515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen J. L., Nolan J. M., Harris M. E., Pace N. R. Comparative photocross-linking analysis of the tertiary structures of Escherichia coli and Bacillus subtilis RNase P RNAs. EMBO J. 1998 Mar 2;17(5):1515–1525. doi: 10.1093/emboj/17.5.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cheong C., Varani G., Tinoco I., Jr Solution structure of an unusually stable RNA hairpin, 5'GGAC(UUCG)GUCC. Nature. 1990 Aug 16;346(6285):680–682. doi: 10.1038/346680a0. [DOI] [PubMed] [Google Scholar]
  6. Colmenarejo G., Tinoco I., Jr Structure and thermodynamics of metal binding in the P5 helix of a group I intron ribozyme. J Mol Biol. 1999 Jul 2;290(1):119–135. doi: 10.1006/jmbi.1999.2867. [DOI] [PubMed] [Google Scholar]
  7. Cowan J. A. Metallobiochemistry of RNA. Co(NH3)6(3+) as a probe for Mg2+(aq) binding sites. J Inorg Biochem. 1993 Feb 15;49(3):171–175. doi: 10.1016/0162-0134(93)80002-q. [DOI] [PubMed] [Google Scholar]
  8. Frank D. N., Ellington A. E., Pace N. R. In vitro selection of RNase P RNA reveals optimized catalytic activity in a highly conserved structural domain. RNA. 1996 Dec;2(12):1179–1188. [PMC free article] [PubMed] [Google Scholar]
  9. Frank D. N., Pace N. R. In vitro selection for altered divalent metal specificity in the RNase P RNA. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14355–14360. doi: 10.1073/pnas.94.26.14355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gonzalez R. L., Jr, Tinoco I., Jr Solution structure and thermodynamics of a divalent metal ion binding site in an RNA pseudoknot. J Mol Biol. 1999 Jun 25;289(5):1267–1282. doi: 10.1006/jmbi.1999.2841. [DOI] [PubMed] [Google Scholar]
  11. Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 1983 Dec;35(3 Pt 2):849–857. doi: 10.1016/0092-8674(83)90117-4. [DOI] [PubMed] [Google Scholar]
  12. Guerrier-Takada C., Haydock K., Allen L., Altman S. Metal ion requirements and other aspects of the reaction catalyzed by M1 RNA, the RNA subunit of ribonuclease P from Escherichia coli. Biochemistry. 1986 Apr 8;25(7):1509–1515. doi: 10.1021/bi00355a006. [DOI] [PubMed] [Google Scholar]
  13. Hardt W. D., Erdmann V. A., Hartmann R. K. Rp-deoxy-phosphorothioate modification interference experiments identify 2'-OH groups in RNase P RNA that are crucial to tRNA binding. RNA. 1996 Dec;2(12):1189–1198. [PMC free article] [PubMed] [Google Scholar]
  14. Harris M. E., Nolan J. M., Malhotra A., Brown J. W., Harvey S. C., Pace N. R. Use of photoaffinity crosslinking and molecular modeling to analyze the global architecture of ribonuclease P RNA. EMBO J. 1994 Sep 1;13(17):3953–3963. doi: 10.1002/j.1460-2075.1994.tb06711.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harris M. E., Pace N. R. Identification of phosphates involved in catalysis by the ribozyme RNase P RNA. RNA. 1995 Apr;1(2):210–218. [PMC free article] [PubMed] [Google Scholar]
  16. Kazantsev A. V., Pace N. R. Identification by modification-interference of purine N-7 and ribose 2'-OH groups critical for catalysis by bacterial ribonuclease P. RNA. 1998 Aug;4(8):937–947. doi: 10.1017/s1355838298980384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kellogg G. W., Schweitzer B. I. Two- and three-dimensional 31P-driven NMR procedures for complete assignment of backbone resonances in oligodeoxyribonucleotides. J Biomol NMR. 1993 Sep;3(5):577–595. doi: 10.1007/BF00174611. [DOI] [PubMed] [Google Scholar]
  18. Kieft J. S., Tinoco I., Jr Solution structure of a metal-binding site in the major groove of RNA complexed with cobalt (III) hexammine. Structure. 1997 May 15;5(5):713–721. doi: 10.1016/s0969-2126(97)00225-6. [DOI] [PubMed] [Google Scholar]
  19. Massire C., Jaeger L., Westhof E. Derivation of the three-dimensional architecture of bacterial ribonuclease P RNAs from comparative sequence analysis. J Mol Biol. 1998 Jun 19;279(4):773–793. doi: 10.1006/jmbi.1998.1797. [DOI] [PubMed] [Google Scholar]
  20. Menger M., Tuschl T., Eckstein F., Porschke D. Mg(2+)-dependent conformational changes in the hammerhead ribozyme. Biochemistry. 1996 Nov 26;35(47):14710–14716. doi: 10.1021/bi960440w. [DOI] [PubMed] [Google Scholar]
  21. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mori S., Abeygunawardana C., Johnson M. O., van Zijl P. C. Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J Magn Reson B. 1995 Jul;108(1):94–98. doi: 10.1006/jmrb.1995.1109. [DOI] [PubMed] [Google Scholar]
  23. Nikonowicz E. P., Sirr A., Legault P., Jucker F. M., Baer L. M., Pardi A. Preparation of 13C and 15N labelled RNAs for heteronuclear multi-dimensional NMR studies. Nucleic Acids Res. 1992 Sep 11;20(17):4507–4513. doi: 10.1093/nar/20.17.4507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pace N. R., Brown J. W. Evolutionary perspective on the structure and function of ribonuclease P, a ribozyme. J Bacteriol. 1995 Apr;177(8):1919–1928. doi: 10.1128/jb.177.8.1919-1928.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rüdisser S., Tinoco I., Jr Solution structure of Cobalt(III)hexammine complexed to the GAAA tetraloop, and metal-ion binding to G.A mismatches. J Mol Biol. 2000 Feb 4;295(5):1211–1223. doi: 10.1006/jmbi.1999.3421. [DOI] [PubMed] [Google Scholar]
  26. Varani G., Tinoco I., Jr RNA structure and NMR spectroscopy. Q Rev Biophys. 1991 Nov;24(4):479–532. doi: 10.1017/s0033583500003875. [DOI] [PubMed] [Google Scholar]
  27. Wyatt J. R., Chastain M., Puglisi J. D. Synthesis and purification of large amounts of RNA oligonucleotides. Biotechniques. 1991 Dec;11(6):764–769. [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES