Skip to main content
RNA logoLink to RNA
. 2000 Sep;6(9):1257–1266. doi: 10.1017/s1355838200992501

Probing the structure of monomers and dimers of the bacterial virus phi29 hexamer RNA complex by chemical modification.

M Trottier 1, Y Mat-Arip 1, C Zhang 1, C Chen 1, S Sheng 1, Z Shao 1, P Guo 1
PMCID: PMC1369999  PMID: 10999603

Abstract

All dsDNA viruses multiply their genome and assemble a procapsid, a protein shell devoid of DNA. The genome is subsequently inserted into the procapsid. The bacterial virus phi29 DNA translocating motor contains a hexameric RNA complex composed of six pRNAs. Recently, we found that pRNA dimers are building blocks of pRNA hexamers. Here, we report the structural probing of pRNA monomers and dimers by chemical modification under native conditions and in the presence or absence of Mg2+. The chemical-modification pattern of the monomer is compared to that of the dimer. The data strongly support the previous secondary-structure prediction of the pRNA concerning the single-stranded areas, including three loops and seven bulges. However, discrepancies between the modification patterns of two predicted helical regions suggest the presence of more complicated, higher-order structure in these areas. It was found that dimers were formed via hand-in-hand and head-to-head contact, as the interacting sequence of the right and left loops and all bases in the head loop were protected from chemical modification. Cryoatomic force microscopy revealed that the monomer displayed a check-mark shape and the dimer exhibited an elongated shape. The dimer was twice as long as the monomer. Direct observation of the shape and measurement of size and thickness of the images strongly support the conclusion from chemical modification concerning the head-to-head contact in dimer formation. Our results also suggest that the role for Mg2+ in pRNA folding is to generate a proper configuration for the right and head loops, which play key roles in this symmetrical head-to-head organization. This explains why Mg2+ plays a critical role in pRNA dimer formation, procapsid binding, and phi29 DNA packaging.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen C., Guo P. Magnesium-induced conformational change of packaging RNA for procapsid recognition and binding during phage phi29 DNA encapsidation. J Virol. 1997 Jan;71(1):495–500. doi: 10.1128/jvi.71.1.495-500.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen C., Guo P. Sequential action of six virus-encoded DNA-packaging RNAs during phage phi29 genomic DNA translocation. J Virol. 1997 May;71(5):3864–3871. doi: 10.1128/jvi.71.5.3864-3871.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen C., Sheng S., Shao Z., Guo P. A dimer as a building block in assembling RNA. A hexamer that gears bacterial virus phi29 DNA-translocating machinery. J Biol Chem. 2000 Jun 9;275(23):17510–17516. doi: 10.1074/jbc.M909662199. [DOI] [PubMed] [Google Scholar]
  4. Chen C., Zhang C., Guo P. Sequence requirement for hand-in-hand interaction in formation of RNA dimers and hexamers to gear phi29 DNA translocation motor. RNA. 1999 Jun;5(6):805–818. doi: 10.1017/s1355838299990350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doering C., Ermentrout B., Oster G. Rotary DNA motors. Biophys J. 1995 Dec;69(6):2256–2267. doi: 10.1016/S0006-3495(95)80096-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Egelman E. H. Homomorphous hexameric helicases: tales from the ring cycle. Structure. 1996 Jul 15;4(7):759–762. doi: 10.1016/S0969-2126(96)00081-0. [DOI] [PubMed] [Google Scholar]
  7. Ehresmann C., Baudin F., Mougel M., Romby P., Ebel J. P., Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987 Nov 25;15(22):9109–9128. doi: 10.1093/nar/15.22.9109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ferrandon D., Koch I., Westhof E., Nüsslein-Volhard C. RNA-RNA interaction is required for the formation of specific bicoid mRNA 3' UTR-STAUFEN ribonucleoprotein particles. EMBO J. 1997 Apr 1;16(7):1751–1758. doi: 10.1093/emboj/16.7.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Garver K., Guo P. Boundary of pRNA functional domains and minimum pRNA sequence requirement for specific connector binding and DNA packaging of phage phi29. RNA. 1997 Sep;3(9):1068–1079. [PMC free article] [PubMed] [Google Scholar]
  10. Garver K., Guo P. Mapping the inter-RNA interaction of bacterial virus phi29 packaging RNA by site-specific photoaffinity cross-linking. J Biol Chem. 2000 Jan 28;275(4):2817–2824. doi: 10.1074/jbc.275.4.2817. [DOI] [PubMed] [Google Scholar]
  11. Geiduschek E. P. Riding the (mono)rails: the structure of catenated DNA-tracking proteins. Chem Biol. 1995 Mar;2(3):123–125. doi: 10.1016/1074-5521(95)90065-9. [DOI] [PubMed] [Google Scholar]
  12. Geiselmann J., Wang Y., Seifried S. E., von Hippel P. H. A physical model for the translocation and helicase activities of Escherichia coli transcription termination protein Rho. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7754–7758. doi: 10.1073/pnas.90.16.7754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guo P. X., Bailey S., Bodley J. W., Anderson D. Characterization of the small RNA of the bacteriophage phi 29 DNA packaging machine. Nucleic Acids Res. 1987 Sep 11;15(17):7081–7090. doi: 10.1093/nar/15.17.7081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guo P. X., Erickson S., Anderson D. A small viral RNA is required for in vitro packaging of bacteriophage phi 29 DNA. Science. 1987 May 8;236(4802):690–694. doi: 10.1126/science.3107124. [DOI] [PubMed] [Google Scholar]
  15. Guo P., Grimes S., Anderson D. A defined system for in vitro packaging of DNA-gp3 of the Bacillus subtilis bacteriophage phi 29. Proc Natl Acad Sci U S A. 1986 May;83(10):3505–3509. doi: 10.1073/pnas.83.10.3505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Guo P., Zhang C., Chen C., Garver K., Trottier M. Inter-RNA interaction of phage phi29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell. 1998 Jul;2(1):149–155. doi: 10.1016/s1097-2765(00)80124-0. [DOI] [PubMed] [Google Scholar]
  17. Han W., Mou J., Sheng J., Yang J., Shao Z. Cryo atomic force microscopy: a new approach for biological imaging at high resolution. Biochemistry. 1995 Jul 4;34(26):8215–8220. doi: 10.1021/bi00026a001. [DOI] [PubMed] [Google Scholar]
  18. Hendrix R. W. Bacteriophage DNA packaging: RNA gears in a DNA transport machine. Cell. 1998 Jul 24;94(2):147–150. doi: 10.1016/s0092-8674(00)81413-0. [DOI] [PubMed] [Google Scholar]
  19. Herendeen D. R., Kassavetis G. A., Geiduschek E. P. A transcriptional enhancer whose function imposes a requirement that proteins track along DNA. Science. 1992 May 29;256(5061):1298–1303. doi: 10.1126/science.1598572. [DOI] [PubMed] [Google Scholar]
  20. Lee C. S., Guo P. A highly sensitive system for the in vitro assembly of bacteriophage phi 29 of Bacillus subtilis. Virology. 1994 Aug 1;202(2):1039–1042. doi: 10.1006/viro.1994.1434. [DOI] [PubMed] [Google Scholar]
  21. Lee C. S., Guo P. In vitro assembly of infectious virions of double-stranded DNA phage phi 29 from cloned gene products and synthetic nucleic acids. J Virol. 1995 Aug;69(8):5018–5023. doi: 10.1128/jvi.69.8.5018-5023.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moazed D., Stern S., Noller H. F. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. J Mol Biol. 1986 Feb 5;187(3):399–416. doi: 10.1016/0022-2836(86)90441-9. [DOI] [PubMed] [Google Scholar]
  23. Mohammad T., Chen C., Guo P., Morrison H. Photoinduced cross-linking of RNA by cis-Rh(phen)2Cl2+ and cis-Rh(phen)(phi)Cl2+: a new family of light activatable nucleic acid cross-linking agents. Bioorg Med Chem Lett. 1999 Jun 21;9(12):1703–1708. doi: 10.1016/s0960-894x(99)00265-6. [DOI] [PubMed] [Google Scholar]
  24. Reid R. J., Bodley J. W., Anderson D. Characterization of the prohead-pRNA interaction of bacteriophage phi 29. J Biol Chem. 1994 Feb 18;269(7):5157–5162. [PubMed] [Google Scholar]
  25. Reid R. J., Zhang F., Benson S., Anderson D. Probing the structure of bacteriophage phi 29 prohead RNA with specific mutations. J Biol Chem. 1994 Jul 15;269(28):18656–18661. [PubMed] [Google Scholar]
  26. San Martín M. C., Gruss C., Carazo J. M. Six molecules of SV40 large T antigen assemble in a propeller-shaped particle around a channel. J Mol Biol. 1997 Apr 25;268(1):15–20. doi: 10.1006/jmbi.1997.0952. [DOI] [PubMed] [Google Scholar]
  27. Trottier M., Guo P. Approaches to determine stoichiometry of viral assembly components. J Virol. 1997 Jan;71(1):487–494. doi: 10.1128/jvi.71.1.487-494.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Trottier M., Zhang C., Guo P. Complete inhibition of virion assembly in vivo with mutant procapsid RNA essential for phage phi 29 DNA packaging. J Virol. 1996 Jan;70(1):55–61. doi: 10.1128/jvi.70.1.55-61.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. West S. C. DNA helicases: new breeds of translocating motors and molecular pumps. Cell. 1996 Jul 26;86(2):177–180. doi: 10.1016/s0092-8674(00)80088-4. [DOI] [PubMed] [Google Scholar]
  30. Wichitwechkarn J., Johnson D., Anderson D. Mutant prohead RNAs in the in vitro packaging of bacteriophage phi 29 DNA-gp3. J Mol Biol. 1992 Feb 20;223(4):991–998. doi: 10.1016/0022-2836(92)90257-k. [DOI] [PubMed] [Google Scholar]
  31. Young M. C., Kuhl S. B., von Hippel P. H. Kinetic theory of ATP-driven translocases on one-dimensional polymer lattices. J Mol Biol. 1994 Feb 4;235(5):1436–1446. doi: 10.1006/jmbi.1994.1099. [DOI] [PubMed] [Google Scholar]
  32. Young M. C., Schultz D. E., Ring D., von Hippel P. H. Kinetic parameters of the translocation of bacteriophage T4 gene 41 protein helicase on single-stranded DNA. J Mol Biol. 1994 Feb 4;235(5):1447–1458. doi: 10.1006/jmbi.1994.1100. [DOI] [PubMed] [Google Scholar]
  33. Zhang C., Lee C. S., Guo P. The proximate 5' and 3' ends of the 120-base viral RNA (pRNA) are crucial for the packaging of bacteriophage phi 29 DNA. Virology. 1994 May 15;201(1):77–85. doi: 10.1006/viro.1994.1267. [DOI] [PubMed] [Google Scholar]
  34. Zhang C., Tellinghuisen T., Guo P. Use of circular permutation to assess six bulges and four loops of DNA-packaging pRNA of bacteriophage phi29. RNA. 1997 Mar;3(3):315–323. [PMC free article] [PubMed] [Google Scholar]
  35. Zhang C., Trottier M., Guo P. Circularly permuted viral pRNA active and specific in the packaging of bacteriophage phi 29 DNA. Virology. 1995 Mar 10;207(2):442–451. doi: 10.1006/viro.1995.1103. [DOI] [PubMed] [Google Scholar]
  36. Zhang F., Lemieux S., Wu X., St-Arnaud D., McMurray C. T., Major F., Anderson D. Function of hexameric RNA in packaging of bacteriophage phi 29 DNA in vitro. Mol Cell. 1998 Jul;2(1):141–147. doi: 10.1016/s1097-2765(00)80123-9. [DOI] [PubMed] [Google Scholar]
  37. Zhang Y., Sheng S., Shao Z. Imaging biological structures with the cryo atomic force microscope. Biophys J. 1996 Oct;71(4):2168–2176. doi: 10.1016/S0006-3495(96)79418-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES