Skip to main content
RNA logoLink to RNA
. 2000 Sep;6(9):1277–1288. doi: 10.1017/s1355838200000285

Effect of 3' terminal adenylic acid residue on the uridylation of human small RNAs in vitro and in frog oocytes.

Y Chen 1, K Sinha 1, K Perumal 1, R Reddy 1
PMCID: PMC1370001  PMID: 10999605

Abstract

It is known that several small RNAs including human and Xenopus signal recognition particle (SRP) RNA, U2 small nuclear RNA (snRNA) and 7SK RNAs are posttranscriptionally adenylated, whereas U6 snRNA and ribosomal 5S RNA are posttranscriptionally uridylated on their 3' ends. In this study, we provide evidence that a small fraction of U6 snRNA and 5S ribosomal RNA molecules from human as well as Xenopus oocytes contain a single posttranscriptionally added adenylic acid residue on their 3' ends. These data show that U6 snRNA and 5S rRNAs are posttranscriptionally modified on their 3' ends by both uridylation and adenylation. Although the SRP RNA, 7SK RNA, 5S RNA, and U6 snRNA with the uridylic acid residue on their 3' ends were readily uridylated, all these RNAs with posttranscriptionally added adenylic acid residue on their 3' ends were not uridylated in vitro, or when U6 snRNA with 3' A(OH) was injected into Xenopus oocytes. These results show that the presence of a single posttranscriptionally added adenylic acid residue on the 3' end of SRP RNA, U6 snRNA, 5S rRNA, or 7SK RNA prevents 3' uridylation. These data also show that adenylation and uridylation are two competing processes that add nucleotides on the 3' end of some small RNAs and suggest that one of the functions of the 3' adenylation may be to negatively affect the 3' uridylation of small RNAs.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Achsel T., Brahms H., Kastner B., Bachi A., Wilm M., Lührmann R. A doughnut-shaped heteromer of human Sm-like proteins binds to the 3'-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro. EMBO J. 1999 Oct 15;18(20):5789–5802. doi: 10.1093/emboj/18.20.5789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alfonzo J. D., Thiemann O., Simpson L. The mechanism of U insertion/deletion RNA editing in kinetoplastid mitochondria. Nucleic Acids Res. 1997 Oct 1;25(19):3751–3759. doi: 10.1093/nar/25.19.3751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allmang C., Kufel J., Chanfreau G., Mitchell P., Petfalski E., Tollervey D. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J. 1999 Oct 1;18(19):5399–5410. doi: 10.1093/emboj/18.19.5399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Allmang C., Petfalski E., Podtelejnikov A., Mann M., Tollervey D., Mitchell P. The yeast exosome and human PM-Scl are related complexes of 3' --> 5' exonucleases. Genes Dev. 1999 Aug 15;13(16):2148–2158. doi: 10.1101/gad.13.16.2148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Andrews N. C., Levin D., Baltimore D. Poliovirus replicase stimulation by terminal uridylyl transferase. J Biol Chem. 1985 Jun 25;260(12):7628–7635. [PubMed] [Google Scholar]
  6. Arts G. J., Benne R. Mechanism and evolution of RNA editing in kinetoplastida. Biochim Biophys Acta. 1996 Jun 3;1307(1):39–54. doi: 10.1016/0167-4781(96)00021-8. [DOI] [PubMed] [Google Scholar]
  7. Arts G. J., Sloof P., Benne R. A possible role for the guide RNA U-tail as a specificity determinant in formation of guide RNA-messenger RNA chimeras in mitochondrial extracts of Crithidia fasciculata. Mol Biochem Parasitol. 1995 Jul;73(1-2):211–222. doi: 10.1016/0166-6851(95)00119-l. [DOI] [PubMed] [Google Scholar]
  8. Attardi G. Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol. 1985;93:93–145. doi: 10.1016/s0074-7696(08)61373-x. [DOI] [PubMed] [Google Scholar]
  9. Booth B. L., Jr, Pugh B. F. Identification and characterization of a nuclease specific for the 3' end of the U6 small nuclear RNA. J Biol Chem. 1997 Jan 10;272(2):984–991. doi: 10.1074/jbc.272.2.984. [DOI] [PubMed] [Google Scholar]
  10. Chen Y., Sinha K., Perumal K., Gu J., Reddy R. Accurate 3' end processing and adenylation of human signal recognition particle RNA and alu RNA in vitro. J Biol Chem. 1998 Dec 25;273(52):35023–35031. doi: 10.1074/jbc.273.52.35023. [DOI] [PubMed] [Google Scholar]
  11. Clayton D. A. Transcription and replication of animal mitochondrial DNAs. Int Rev Cytol. 1992;141:217–232. doi: 10.1016/s0074-7696(08)62067-7. [DOI] [PubMed] [Google Scholar]
  12. Das G., Henning D., Wright D., Reddy R. Upstream regulatory elements are necessary and sufficient for transcription of a U6 RNA gene by RNA polymerase III. EMBO J. 1988 Feb;7(2):503–512. doi: 10.1002/j.1460-2075.1988.tb02838.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Denis H., Wegnez M. Recherches biochimiques sur l'oogenése. 7. Synthése et maturation du RNA 5S dans les petitis oocytes de Xenopus laevis. Biochimie. 1973;55(9):1137–1151. doi: 10.1016/s0300-9084(73)80453-5. [DOI] [PubMed] [Google Scholar]
  14. Deutscher M. P. Ribonucleases, tRNA nucleotidyltransferase, and the 3' processing of tRNA. Prog Nucleic Acid Res Mol Biol. 1990;39:209–240. doi: 10.1016/s0079-6603(08)60628-5. [DOI] [PubMed] [Google Scholar]
  15. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. England T. E., Bruce A. G., Uhlenbeck O. C. Specific labeling of 3' termini of RNA with T4 RNA ligase. Methods Enzymol. 1980;65(1):65–74. doi: 10.1016/s0076-6879(80)65011-3. [DOI] [PubMed] [Google Scholar]
  17. Fischer U., Lührmann R. An essential signaling role for the m3G cap in the transport of U1 snRNP to the nucleus. Science. 1990 Aug 17;249(4970):786–790. doi: 10.1126/science.2143847. [DOI] [PubMed] [Google Scholar]
  18. Ford L. P., Wilusz J. 3'-Terminal RNA structures and poly(U) tracts inhibit initiation by a 3'-->5' exonuclease in vitro. Nucleic Acids Res. 1999 Feb 15;27(4):1159–1167. doi: 10.1093/nar/27.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gu J., Shumyatsky G., Makan N., Reddy R. Formation of 2',3'-cyclic phosphates at the 3' end of human U6 small nuclear RNA in vitro. Identification of 2',3'-cyclic phosphates at the 3' ends of human signal recognition particle and mitochondrial RNA processing RNAs. J Biol Chem. 1997 Aug 29;272(35):21989–21993. doi: 10.1074/jbc.272.35.21989. [DOI] [PubMed] [Google Scholar]
  20. Hernandez N. Formation of the 3' end of U1 snRNA is directed by a conserved sequence located downstream of the coding region. EMBO J. 1985 Jul;4(7):1827–1837. doi: 10.1002/j.1460-2075.1985.tb03857.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hirai H., Lee D. I., Natori S., Sekimizu K. Uridylation of U6 RNA in a nuclear extract in Ehrlich ascites tumor cells. J Biochem. 1988 Dec;104(6):991–994. doi: 10.1093/oxfordjournals.jbchem.a122597. [DOI] [PubMed] [Google Scholar]
  22. Keller W. No end yet to messenger RNA 3' processing! Cell. 1995 Jun 16;81(6):829–832. doi: 10.1016/0092-8674(95)90001-2. [DOI] [PubMed] [Google Scholar]
  23. Kleinschmidt A. M., Pederson T. Accurate and efficient 3' processing of U2 small nuclear RNA precursor in a fractionated cytoplasmic extract. Mol Cell Biol. 1987 Sep;7(9):3131–3137. doi: 10.1128/mcb.7.9.3131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kunkel G. R., Maser R. L., Calvet J. P., Pederson T. U6 small nuclear RNA is transcribed by RNA polymerase III. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8575–8579. doi: 10.1073/pnas.83.22.8575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Leung S. S., Koslowsky D. J. Mapping contacts between gRNA and mRNA in trypanosome RNA editing. Nucleic Acids Res. 1999 Feb 1;27(3):778–787. doi: 10.1093/nar/27.3.778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Li Z., Pandit S., Deutscher M. P. Polyadenylation of stable RNA precursors in vivo. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12158–12162. doi: 10.1073/pnas.95.21.12158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lund E., Dahlberg J. E. Cyclic 2',3'-phosphates and nontemplated nucleotides at the 3' end of spliceosomal U6 small nuclear RNA's. Science. 1992 Jan 17;255(5042):327–330. doi: 10.1126/science.1549778. [DOI] [PubMed] [Google Scholar]
  28. Manley J. L. A complex protein assembly catalyzes polyadenylation of mRNA precursors. Curr Opin Genet Dev. 1995 Apr;5(2):222–228. doi: 10.1016/0959-437x(95)80012-3. [DOI] [PubMed] [Google Scholar]
  29. Mayes A. E., Verdone L., Legrain P., Beggs J. D. Characterization of Sm-like proteins in yeast and their association with U6 snRNA. EMBO J. 1999 Aug 2;18(15):4321–4331. doi: 10.1093/emboj/18.15.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mitchell P., Petfalski E., Shevchenko A., Mann M., Tollervey D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell. 1997 Nov 14;91(4):457–466. doi: 10.1016/s0092-8674(00)80432-8. [DOI] [PubMed] [Google Scholar]
  31. Parker K. A., Steitz J. A. Determination of RNA-protein and RNA-ribonucleoprotein interactions by nuclease probing. Methods Enzymol. 1989;180:454–468. doi: 10.1016/0076-6879(89)80117-x. [DOI] [PubMed] [Google Scholar]
  32. Peris M., Frech G. C., Simpson A. M., Bringaud F., Byrne E., Bakker A., Simpson L. Characterization of two classes of ribonucleoprotein complexes possibly involved in RNA editing from Leishmania tarentolae mitochondria. EMBO J. 1994 Apr 1;13(7):1664–1672. doi: 10.1002/j.1460-2075.1994.tb06430.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Perumal K., Gu J., Reddy R. Evolutionary conservation of post-transcriptional 3' end adenylation of small RNAs: S. cerevisiae signal recognition particle RNA and U2 small nuclear RNA are post-transcriptionally adenylated. Mol Cell Biochem. 2000 May;208(1-2):99–109. doi: 10.1023/a:1007098122583. [DOI] [PubMed] [Google Scholar]
  34. Preiser P., Vasisht V., Birk A., Levinger L. Poly(U)-binding protein inhibits Drosophila pre-5 S RNA 3'-exonuclease digestion. J Biol Chem. 1993 Jun 5;268(16):11553–11557. [PubMed] [Google Scholar]
  35. Reddy R., Henning D., Das G., Harless M., Wright D. The capped U6 small nuclear RNA is transcribed by RNA polymerase III. J Biol Chem. 1987 Jan 5;262(1):75–81. [PubMed] [Google Scholar]
  36. Rinke J., Steitz J. A. Association of the lupus antigen La with a subset of U6 snRNA molecules. Nucleic Acids Res. 1985 Apr 11;13(7):2617–2629. doi: 10.1093/nar/13.7.2617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shumyatsky G., Wright D., Reddy R. Methylphosphate cap structure increases the stability of 7SK, B2 and U6 small RNAs in Xenopus oocytes. Nucleic Acids Res. 1993 Oct 11;21(20):4756–4761. doi: 10.1093/nar/21.20.4756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Silberklang M., Gillum A. M., RajBhandary U. L. Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods Enzymol. 1979;59:58–109. doi: 10.1016/0076-6879(79)59072-7. [DOI] [PubMed] [Google Scholar]
  40. Singh R., Reddy R. Gamma-monomethyl phosphate: a cap structure in spliceosomal U6 small nuclear RNA. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8280–8283. doi: 10.1073/pnas.86.21.8280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sinha K. M., Gu J., Chen Y., Reddy R. Adenylation of small RNAs in human cells. Development of a cell-free system for accurate adenylation on the 3'-end of human signal recognition particle RNA. J Biol Chem. 1998 Mar 20;273(12):6853–6859. doi: 10.1074/jbc.273.12.6853. [DOI] [PubMed] [Google Scholar]
  42. Sinha K., Perumal K., Chen Y., Reddy R. Post-transcriptional adenylation of signal recognition particle RNA is carried out by an enzyme different from mRNA Poly(A) polymerase. J Biol Chem. 1999 Oct 22;274(43):30826–30831. doi: 10.1074/jbc.274.43.30826. [DOI] [PubMed] [Google Scholar]
  43. Sollner-Webb B. Trypanosome RNA editing: resolved. Science. 1996 Aug 30;273(5279):1182–1183. doi: 10.1126/science.273.5279.1182. [DOI] [PubMed] [Google Scholar]
  44. Stuart K., Allen T. E., Heidmann S., Seiwert S. D. RNA editing in kinetoplastid protozoa. Microbiol Mol Biol Rev. 1997 Mar;61(1):105–120. doi: 10.1128/mmbr.61.1.105-120.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Terns M. P., Goldfarb D. S. Nuclear transport of RNAs in microinjected Xenopus oocytes. Methods Cell Biol. 1998;53:559–589. doi: 10.1016/s0091-679x(08)60895-x. [DOI] [PubMed] [Google Scholar]
  46. Terns M. P., Lund E., Dahlberg J. E. 3'-end-dependent formation of U6 small nuclear ribonucleoprotein particles in Xenopus laevis oocyte nuclei. Mol Cell Biol. 1992 Jul;12(7):3032–3040. doi: 10.1128/mcb.12.7.3032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Tichelaar J. W., Wieben E. D., Reddy R., Vrabel A., Camacho P. In vivo expression of a variant human U6 RNA from a unique, internal promoter. Biochemistry. 1998 Sep 15;37(37):12943–12951. doi: 10.1021/bi9811361. [DOI] [PubMed] [Google Scholar]
  48. Trippe R., Sandrock B., Benecke B. J. A highly specific terminal uridylyl transferase modifies the 3'-end of U6 small nuclear RNA. Nucleic Acids Res. 1998 Jul 1;26(13):3119–3126. doi: 10.1093/nar/26.13.3119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Weil P. A., Segall J., Harris B., Ng S. Y., Roeder R. G. Faithful transcription of eukaryotic genes by RNA polymerase III in systems reconstituted with purified DNA templates. J Biol Chem. 1979 Jul 10;254(13):6163–6173. [PubMed] [Google Scholar]
  50. Wendelburg B. J., Marzluff W. F. Formation of the 3' end of sea urchin U1 small nuclear RNA occurs independently of the conserved 3' box and on transcripts initiated from a histone promoter. Mol Cell Biol. 1992 Sep;12(9):4132–4141. doi: 10.1128/mcb.12.9.4132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yang H., Moss M. L., Lund E., Dahlberg J. E. Nuclear processing of the 3'-terminal nucleotides of pre-U1 RNA in Xenopus laevis oocytes. Mol Cell Biol. 1992 Apr;12(4):1553–1560. doi: 10.1128/mcb.12.4.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Zabel P., Dorssers L., Wernars K., Van Kammen A. Terminal uridylyl transferase of Vigna unguiculata: purification and characterization of an enzyme catalyzing the addition of a single UMP residue to the 3'-end of an RNA primer. Nucleic Acids Res. 1981 Jun 11;9(11):2433–2453. doi: 10.1093/nar/9.11.2433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Zieve G. W., Sauterer R. A., Feeney R. J. Newly synthesized small nuclear RNAs appear transiently in the cytoplasm. J Mol Biol. 1988 Jan 20;199(2):259–267. doi: 10.1016/0022-2836(88)90312-9. [DOI] [PubMed] [Google Scholar]
  54. van Hoof A., Parker R. The exosome: a proteasome for RNA? Cell. 1999 Nov 12;99(4):347–350. doi: 10.1016/s0092-8674(00)81520-2. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES