Abstract
The crystal structure of r(GCCACCCUG).r(CAGGGUCGGC), helix II of the Xenopus laevis 5S rRNA with a cytosine bulge (underlined), has been determined in two forms at 2.2 A (Form I, space group P4(2)2(1)2, a = b = 57.15 A and c = 43.54 A) and 1.7 A (Form II, space group P4(3)2(1)2, a = b = 32.78 A and c = 102.5 A). The helical regions of the nonamers are found in the standard A-RNA conformations and the two forms have an RMS deviation of 0.75 A. However, the cytosine bulge adopts two significantly different conformations with an RMS deviation of 3.9 A. In Form I, the cytosine bulge forms an intermolecular C+*G.C triple in the major groove of a symmetry-related duplex with intermolecular hydrogen bonds between N4C and O6G, and between protonated N3+C and N7G. In contrast, a minor groove C*G.C triple is formed in Form II with intermolecular hydrogen bonds between O2C and N2G, and between N3C and N3G with a water bridge. A partial major groove opening was observed in Form I structure at the bulge site. Two Ca2+ ions were found in Form I helix whereas there were none in Form II. The structural comparison of these two forms indicates that bulged residues can adopt a variety of conformations with little perturbation to the global helix structure. This suggests that bulged residues could function as flexible latches in bridging double helical motifs and facilitate the folding of large RNA molecules.
Full Text
The Full Text of this article is available as a PDF (4.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baeyens K. J., De Bondt H. L., Pardi A., Holbrook S. R. A curved RNA helix incorporating an internal loop with G.A and A.A non-Watson-Crick base pairing. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12851–12855. doi: 10.1073/pnas.93.23.12851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Betzel C., Lorenz S., Fürste J. P., Bald R., Zhang M., Schneider T. R., Wilson K. S., Erdmann V. A. Crystal structure of domain A of Thermus flavus 5S rRNA and the contribution of water molecules to its structure. FEBS Lett. 1994 Sep 5;351(2):159–164. doi: 10.1016/0014-5793(94)00834-5. [DOI] [PubMed] [Google Scholar]
- Bhattacharyya A., Murchie A. I., Lilley D. M. RNA bulges and the helical periodicity of double-stranded RNA. Nature. 1990 Feb 1;343(6257):484–487. doi: 10.1038/343484a0. [DOI] [PubMed] [Google Scholar]
- Brünger A. T., Adams P. D., Clore G. M., DeLano W. L., Gros P., Grosse-Kunstleve R. W., Jiang J. S., Kuszewski J., Nilges M., Pannu N. S. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905–921. doi: 10.1107/s0907444998003254. [DOI] [PubMed] [Google Scholar]
- Cate J. H., Hanna R. L., Doudna J. A. A magnesium ion core at the heart of a ribozyme domain. Nat Struct Biol. 1997 Jul;4(7):553–558. doi: 10.1038/nsb0797-553. [DOI] [PubMed] [Google Scholar]
- Chang L. S., Chou Y. C., Lin S. R., Wu B. N., Lin J., Hong E., Sun Y. J., Hsiao C. D. A novel neurotoxin, cobrotoxin b, from Naja naja atra (Taiwan cobra) venom: purification, characterization, and gene organization. J Biochem. 1997 Dec;122(6):1252–1259. doi: 10.1093/oxfordjournals.jbchem.a021889. [DOI] [PubMed] [Google Scholar]
- Correll C. C., Freeborn B., Moore P. B., Steitz T. A. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell. 1997 Nov 28;91(5):705–712. doi: 10.1016/s0092-8674(00)80457-2. [DOI] [PubMed] [Google Scholar]
- Dingwall C., Ernberg I., Gait M. J., Green S. M., Heaphy S., Karn J., Lowe A. D., Singh M., Skinner M. A. HIV-1 tat protein stimulates transcription by binding to a U-rich bulge in the stem of the TAR RNA structure. EMBO J. 1990 Dec;9(12):4145–4153. doi: 10.1002/j.1460-2075.1990.tb07637.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dokudovskaya S., Dontsova O., Shpanchenko O., Bogdanov A., Brimacombe R. Loop IV of 5S ribosomal RNA has contacts both to domain II and to domain V of the 23S RNA. RNA. 1996 Feb;2(2):146–152. [PMC free article] [PubMed] [Google Scholar]
- Ennifar E., Yusupov M., Walter P., Marquet R., Ehresmann B., Ehresmann C., Dumas P. The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges. Structure. 1999 Nov 15;7(11):1439–1449. doi: 10.1016/s0969-2126(00)80033-7. [DOI] [PubMed] [Google Scholar]
- Green R., Noller H. F. Ribosomes and translation. Annu Rev Biochem. 1997;66:679–716. doi: 10.1146/annurev.biochem.66.1.679. [DOI] [PubMed] [Google Scholar]
- Göringer H. U., Wagner R. Construction and functional analysis of ribosomal 5S RNA from Escherichia coli with single base changes in the ribosomal protein binding sites. Biol Chem Hoppe Seyler. 1986 Aug;367(8):769–780. doi: 10.1515/bchm3.1986.367.2.769. [DOI] [PubMed] [Google Scholar]
- Huber P. W., Wool I. G. Nuclease protection analysis of ribonucleoprotein complexes: use of the cytotoxic ribonuclease alpha-sarcin to determine the binding sites for Escherichia coli ribosomal proteins L5, L18, and L25 on 5S rRNA. Proc Natl Acad Sci U S A. 1984 Jan;81(2):322–326. doi: 10.1073/pnas.81.2.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ippolito J. A., Steitz T. A. A 1.3-A resolution crystal structure of the HIV-1 trans-activation response region RNA stem reveals a metal ion-dependent bulge conformation. Proc Natl Acad Sci U S A. 1998 Aug 18;95(17):9819–9824. doi: 10.1073/pnas.95.17.9819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ippolito J. A., Steitz T. A. The structure of the HIV-1 RRE high affinity rev binding site at 1.6 A resolution. J Mol Biol. 2000 Jan 28;295(4):711–717. doi: 10.1006/jmbi.1999.3405. [DOI] [PubMed] [Google Scholar]
- Jaffrey S. R., Haile D. J., Klausner R. D., Harford J. B. The interaction between the iron-responsive element binding protein and its cognate RNA is highly dependent upon both RNA sequence and structure. Nucleic Acids Res. 1993 Sep 25;21(19):4627–4631. doi: 10.1093/nar/21.19.4627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jang S. B., Hung L. W., Chi Y. I., Holbrook E. L., Carter R. J., Holbrook S. R. Structure of an RNA internal loop consisting of tandem C-A+ base pairs. Biochemistry. 1998 Aug 25;37(34):11726–11731. doi: 10.1021/bi980758j. [DOI] [PubMed] [Google Scholar]
- Joshua-Tor L., Frolow F., Appella E., Hope H., Rabinovich D., Sussman J. L. Three-dimensional structures of bulge-containing DNA fragments. J Mol Biol. 1992 May 20;225(2):397–431. doi: 10.1016/0022-2836(92)90929-e. [DOI] [PubMed] [Google Scholar]
- McBryant S. J., Veldhoen N., Gedulin B., Leresche A., Foster M. P., Wright P. E., Romaniuk P. J., Gottesfeld J. M. Interaction of the RNA binding fingers of Xenopus transcription factor IIIA with specific regions of 5 S ribosomal RNA. J Mol Biol. 1995 Apr 21;248(1):44–57. doi: 10.1006/jmbi.1995.0201. [DOI] [PubMed] [Google Scholar]
- Meier N., Göringer H. U., Kleuvers B., Scheibe U., Eberle J., Szymkowiak C., Zacharias M., Wagner R. The importance of individual nucleotides for the structure and function of rRNA molecules in E. coli. A mutagenesis study. FEBS Lett. 1986 Aug 11;204(1):89–95. doi: 10.1016/0014-5793(86)81392-8. [DOI] [PubMed] [Google Scholar]
- Pan B., Mitra S. N., Sundaralingam M. Crystal structure of an RNA 16-mer duplex R(GCAGAGUUAAAUCUGC)2 with nonadjacent G(syn).A+(anti) mispairs. Biochemistry. 1999 Mar 2;38(9):2826–2831. doi: 10.1021/bi982122y. [DOI] [PubMed] [Google Scholar]
- Pan B., Mitra S. N., Sundaralingam M. Structure of a 16-mer RNA duplex r(GCAGACUUAAAUCUGC)2 with wobble C.A+ mismatches. J Mol Biol. 1998 Nov 13;283(5):977–984. doi: 10.1006/jmbi.1998.2140. [DOI] [PubMed] [Google Scholar]
- Parkinson G., Vojtechovsky J., Clowney L., Brünger A. T., Berman H. M. New parameters for the refinement of nucleic acid-containing structures. Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):57–64. doi: 10.1107/S0907444995011115. [DOI] [PubMed] [Google Scholar]
- Pelham H. R., Brown D. D. A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4170–4174. doi: 10.1073/pnas.77.7.4170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Picard B., Wegnez M. Isolation of a 7S particle from Xenopus laevis oocytes: a 5S RNA-protein complex. Proc Natl Acad Sci U S A. 1979 Jan;76(1):241–245. doi: 10.1073/pnas.76.1.241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Portmann S., Grimm S., Workman C., Usman N., Egli M. Crystal structures of an A-form duplex with single-adenosine bulges and a conformational basis for site-specific RNA self-cleavage. Chem Biol. 1996 Mar;3(3):173–184. doi: 10.1016/s1074-5521(96)90260-4. [DOI] [PubMed] [Google Scholar]
- Portmann S., Usman N., Egli M. The crystal structure of r(CCCCGGGG) in two distinct lattices. Biochemistry. 1995 Jun 13;34(23):7569–7575. doi: 10.1021/bi00023a002. [DOI] [PubMed] [Google Scholar]
- Pritchard C. E., Grasby J. A., Hamy F., Zacharek A. M., Singh M., Karn J., Gait M. J. Methylphosphonate mapping of phosphate contacts critical for RNA recognition by the human immunodeficiency virus tat and rev proteins. Nucleic Acids Res. 1994 Jul 11;22(13):2592–2600. doi: 10.1093/nar/22.13.2592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROSSET R., MONIER R. [Apropos of the presence of weak molecular weight RNA in the ribosomes of Escherichia Coli]. Biochim Biophys Acta. 1963 Apr 30;68:653–656. doi: 10.1016/0006-3002(63)90199-9. [DOI] [PubMed] [Google Scholar]
- Sergiev P., Dokudovskaya S., Romanova E., Topin A., Bogdanov A., Brimacombe R., Dontsova O. The environment of 5S rRNA in the ribosome: cross-links to the GTPase-associated area of 23S rRNA. Nucleic Acids Res. 1998 Jun 1;26(11):2519–2525. doi: 10.1093/nar/26.11.2519. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharp P. A. Splicing of messenger RNA precursors. Science. 1987 Feb 13;235(4790):766–771. doi: 10.1126/science.3544217. [DOI] [PubMed] [Google Scholar]
- Shatsky I. N., Evstafieva A. G., Bystrova T. F., Bogdanov A. A., Vasiliev V. D. Topography of RNA in the ribosome: location of the 3'-end of 5 S RNA on the central protuberance of the 50 S subunit. FEBS Lett. 1980 Nov 17;121(1):97–100. doi: 10.1016/0014-5793(80)81274-9. [DOI] [PubMed] [Google Scholar]
- Shi K., Biswas R., Mitra S. N., Sundaralingam M. The crystal structure of the octamer [r(guauaca)dC]2 with six Watson-Crick base-pairs and two 3' overhang residues. J Mol Biol. 2000 May 26;299(1):113–122. doi: 10.1006/jmbi.2000.3751. [DOI] [PubMed] [Google Scholar]
- Stöffler-Meilicke M., Stöffler G., Odom O. W., Zinn A., Kramer G., Hardesty B. Localization of 3' ends of 5S and 23S rRNAs in reconstituted subunits of Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5538–5542. doi: 10.1073/pnas.78.9.5538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sudarsanakumar C., Xiong Y., Sundaralingam M. Crystal structure of an adenine bulge in the RNA chain of a DNA.RNA hybrid, d(CTCCTCTTC).r(gaagagagag). J Mol Biol. 2000 May 26;299(1):103–112. doi: 10.1006/jmbi.2000.3730. [DOI] [PubMed] [Google Scholar]
- Szymanski M., Barciszewska M. Z., Barciszewski J., Erdmann V. A. 5S Ribosomal RNA Data Bank. Nucleic Acids Res. 1999 Jan 1;27(1):158–160. doi: 10.1093/nar/27.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang R. S., Draper D. E. Bulge loops used to measure the helical twist of RNA in solution. Biochemistry. 1990 Jun 5;29(22):5232–5237. doi: 10.1021/bi00474a003. [DOI] [PubMed] [Google Scholar]
- Theunissen O., Rudt F., Guddat U., Mentzel H., Pieler T. RNA and DNA binding zinc fingers in Xenopus TFIIIA. Cell. 1992 Nov 13;71(4):679–690. doi: 10.1016/0092-8674(92)90601-8. [DOI] [PubMed] [Google Scholar]
- Valegârd K., Murray J. B., Stonehouse N. J., van den Worm S., Stockley P. G., Liljas L. The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions. J Mol Biol. 1997 Aug 1;270(5):724–738. doi: 10.1006/jmbi.1997.1144. [DOI] [PubMed] [Google Scholar]
- Wedekind J. E., McKay D. B. Crystal structure of a lead-dependent ribozyme revealing metal binding sites relevant to catalysis. Nat Struct Biol. 1999 Mar;6(3):261–268. doi: 10.1038/6700. [DOI] [PubMed] [Google Scholar]
- Westman E., Strömberg R. Removal of t-butyldimethylsilyl protection in RNA-synthesis. Triethylamine trihydrofluoride (TEA, 3HF) is a more reliable alternative to tetrabutylammonium fluoride (TBAF). Nucleic Acids Res. 1994 Jun 25;22(12):2430–2431. doi: 10.1093/nar/22.12.2430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woese C. R., Gutell R. R. Evidence for several higher order structural elements in ribosomal RNA. Proc Natl Acad Sci U S A. 1989 May;86(9):3119–3122. doi: 10.1073/pnas.86.9.3119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu H. N., Uhlenbeck O. C. Role of a bulged A residue in a specific RNA-protein interaction. Biochemistry. 1987 Dec 15;26(25):8221–8227. doi: 10.1021/bi00399a030. [DOI] [PubMed] [Google Scholar]
- Xiong Y., Sundaralingam M. Crystal structure and conformation of a DNA-RNA hybrid duplex with a polypurine RNA strand: d(TTCTTBr5CTTC)-r(GAAGAAGAA). Structure. 1998 Dec 15;6(12):1493–1501. doi: 10.1016/s0969-2126(98)00148-8. [DOI] [PubMed] [Google Scholar]
- Zacharias M., Hagerman P. J. Bulge-induced bends in RNA: quantification by transient electric birefringence. J Mol Biol. 1995 Mar 31;247(3):486–500. doi: 10.1006/jmbi.1995.0155. [DOI] [PubMed] [Google Scholar]
- Zhang P., Popieniek P., Moore P. B. Physical studies of 5S RNA variants at position 66. Nucleic Acids Res. 1989 Nov 11;17(21):8645–8656. doi: 10.1093/nar/17.21.8645. [DOI] [PMC free article] [PubMed] [Google Scholar]