Skip to main content
RNA logoLink to RNA
. 2000 Oct;6(10):1413–1422. doi: 10.1017/s1355838200000959

The 3' substrate determinants for the catalytic efficiency of the Bacillus subtilis RNase P holoenzyme suggest autolytic processing of the RNase P RNA in vivo.

A Loria 1, T Pan 1
PMCID: PMC1370012  PMID: 11073217

Abstract

We investigated the catalytic efficiency and the specificity of the Bacillus subtilis RNase P holoenzyme reaction with substrates that contain a single strand, a hairpin loop, or a tRNA 3' to the cleavage site. At a saturating ribozyme concentration, RNase P can cleave a single-stranded RNA at approximately 0.6 min(-1) at pH 7.8. Replacing the single-stranded RNA 3' to the cleavage site by a hairpin loop or by the yeast tRNA(Phe) increases the cleavage rate by up to approximately 600-fold and approximately 3,200-fold, respectively. These results show that compared to a single-stranded RNA substrate, the cleavage rate for the holoenzyme reaction is primarily enhanced by an acceptor-stem-like helix. Substrate binding, approximately 7-10 microM for a single-stranded RNA, improves by approximately 1,000-fold upon the addition of the tRNA. The efficiency of the RNase P holoenzyme cleaving a single-stranded RNA is sufficiently high to consider autolytic processing of the RNase P RNA (denoted P RNA) transcript in the cell. The addition of the RNase P protein to a precursor form of the P RNA in vitro results in autolytic processing of the 5' and the 3' end of this precursor in a matter of minutes. Autolytic processing produces the reported 5' end of the mature P RNA. The precise 3' end generated by autolytic processing is different over the course of the reaction and the final product is 4 nt shorter than the reported 3' end of the B. subtilis P RNA. The observed 3' end in vitro is consistent with the property of the holoenzyme reaction with single-stranded RNA substrates. The discrepancy with the reported 3' end may be due to other processing events in vivo or inaccurate determination of the mature 3' end of the P RNA isolated from the cell. We propose that the mature B. subtilis P RNA is generated at least in part by autolytic processing upon the binding of the RNase P protein to the precursor P RNA.

Full Text

The Full Text of this article is available as a PDF (438.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albery W. J., Knowles J. R. Evolution of enzyme function and the development of catalytic efficiency. Biochemistry. 1976 Dec 14;15(25):5631–5640. doi: 10.1021/bi00670a032. [DOI] [PubMed] [Google Scholar]
  2. Beebe J. A., Fierke C. A. A kinetic mechanism for cleavage of precursor tRNA(Asp) catalyzed by the RNA component of Bacillus subtilis ribonuclease P. Biochemistry. 1994 Aug 30;33(34):10294–10304. doi: 10.1021/bi00200a009. [DOI] [PubMed] [Google Scholar]
  3. Chen J. L., Nolan J. M., Harris M. E., Pace N. R. Comparative photocross-linking analysis of the tertiary structures of Escherichia coli and Bacillus subtilis RNase P RNAs. EMBO J. 1998 Mar 2;17(5):1515–1525. doi: 10.1093/emboj/17.5.1515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Christian E. L., Harris M. E. The track of the pre-tRNA 5' leader in the ribonuclease P ribozyme-substrate complex. Biochemistry. 1999 Sep 28;38(39):12629–12638. doi: 10.1021/bi991278a. [DOI] [PubMed] [Google Scholar]
  5. Crary S. M., Niranjanakumari S., Fierke C. A. The protein component of Bacillus subtilis ribonuclease P increases catalytic efficiency by enhancing interactions with the 5' leader sequence of pre-tRNAAsp. Biochemistry. 1998 Jun 30;37(26):9409–9416. doi: 10.1021/bi980613c. [DOI] [PubMed] [Google Scholar]
  6. England T. E., Bruce A. G., Uhlenbeck O. C. Specific labeling of 3' termini of RNA with T4 RNA ligase. Methods Enzymol. 1980;65(1):65–74. doi: 10.1016/s0076-6879(80)65011-3. [DOI] [PubMed] [Google Scholar]
  7. Frank D. N., Pace N. R. Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Annu Rev Biochem. 1998;67:153–180. doi: 10.1146/annurev.biochem.67.1.153. [DOI] [PubMed] [Google Scholar]
  8. Green C. J., Stewart G. C., Hollis M. A., Vold B. S., Bott K. F. Nucleotide sequence of the Bacillus subtilis ribosomal RNA operon, rrnB. Gene. 1985;37(1-3):261–266. doi: 10.1016/0378-1119(85)90281-1. [DOI] [PubMed] [Google Scholar]
  9. Gurevitz M., Jain S. K., Apirion D. Identification of a precursor molecular for the RNA moiety of the processing enzyme RNase P. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4450–4454. doi: 10.1073/pnas.80.14.4450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harris M. E., Nolan J. M., Malhotra A., Brown J. W., Harvey S. C., Pace N. R. Use of photoaffinity crosslinking and molecular modeling to analyze the global architecture of ribonuclease P RNA. EMBO J. 1994 Sep 1;13(17):3953–3963. doi: 10.1002/j.1460-2075.1994.tb06711.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hertel K. J., Herschlag D., Uhlenbeck O. C. A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry. 1994 Mar 22;33(11):3374–3385. doi: 10.1021/bi00177a031. [DOI] [PubMed] [Google Scholar]
  12. Holm P. S., Krupp G. The acceptor stem in pre-tRNAs determines the cleavage specificity of RNase P. Nucleic Acids Res. 1992 Feb 11;20(3):421–423. doi: 10.1093/nar/20.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kahle D., Wehmeyer U., Krupp G. Substrate recognition by RNase P and by the catalytic M1 RNA: identification of possible contact points in pre-tRNAs. EMBO J. 1990 Jun;9(6):1929–1937. doi: 10.1002/j.1460-2075.1990.tb08320.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kim S., Sim S., Lee Y. In vitro analysis of processing at the 3'-end of precursors of M1 RNA, the catalytic subunit of Escherichia coli RNase P: multiple pathways and steps for the processing. Nucleic Acids Res. 1999 Feb 1;27(3):895–902. doi: 10.1093/nar/27.3.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kirsebom L. A. RNase P--a 'Scarlet Pimpernel'. Mol Microbiol. 1995 Aug;17(3):411–420. doi: 10.1111/j.1365-2958.1995.mmi_17030411.x. [DOI] [PubMed] [Google Scholar]
  16. Kurz J. C., Niranjanakumari S., Fierke C. A. Protein component of Bacillus subtilis RNase P specifically enhances the affinity for precursor-tRNAAsp. Biochemistry. 1998 Feb 24;37(8):2393–2400. doi: 10.1021/bi972530m. [DOI] [PubMed] [Google Scholar]
  17. LaGrandeur T. E., Hüttenhofer A., Noller H. F., Pace N. R. Phylogenetic comparative chemical footprint analysis of the interaction between ribonuclease P RNA and tRNA. EMBO J. 1994 Sep 1;13(17):3945–3952. doi: 10.1002/j.1460-2075.1994.tb06710.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lee Y., Ramamoorthy R., Park C. U., Schmidt F. J. Sites of initiation and pausing in the Escherichia coli rnpB (M1 RNA) transcript. J Biol Chem. 1989 Mar 25;264(9):5098–5103. [PubMed] [Google Scholar]
  19. Loria A., Niranjanakumari S., Fierke C. A., Pan T. Recognition of a pre-tRNA substrate by the Bacillus subtilis RNase P holoenzyme. Biochemistry. 1998 Nov 3;37(44):15466–15473. doi: 10.1021/bi9816507. [DOI] [PubMed] [Google Scholar]
  20. Loria A., Pan T. Recognition of the T stem-loop of a pre-tRNA substrate by the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry. 1997 May 27;36(21):6317–6325. doi: 10.1021/bi970115o. [DOI] [PubMed] [Google Scholar]
  21. Loria A., Pan T. The cleavage step of ribonuclease P catalysis is determined by ribozyme-substrate interactions both distal and proximal to the cleavage site. Biochemistry. 1999 Jul 6;38(27):8612–8620. doi: 10.1021/bi990691f. [DOI] [PubMed] [Google Scholar]
  22. Lundberg U., Altman S. Processing of the precursor to the catalytic RNA subunit of RNase P from Escherichia coli. RNA. 1995 May;1(3):327–334. [PMC free article] [PubMed] [Google Scholar]
  23. Massire C., Jaeger L., Westhof E. Derivation of the three-dimensional architecture of bacterial ribonuclease P RNAs from comparative sequence analysis. J Mol Biol. 1998 Jun 19;279(4):773–793. doi: 10.1006/jmbi.1998.1797. [DOI] [PubMed] [Google Scholar]
  24. McClain W. H., Guerrier-Takada C., Altman S. Model substrates for an RNA enzyme. Science. 1987 Oct 23;238(4826):527–530. doi: 10.1126/science.2443980. [DOI] [PubMed] [Google Scholar]
  25. Moore M. J., Sharp P. A. Site-specific modification of pre-mRNA: the 2'-hydroxyl groups at the splice sites. Science. 1992 May 15;256(5059):992–997. doi: 10.1126/science.1589782. [DOI] [PubMed] [Google Scholar]
  26. Narlikar G. J., Herschlag D. Mechanistic aspects of enzymatic catalysis: lessons from comparison of RNA and protein enzymes. Annu Rev Biochem. 1997;66:19–59. doi: 10.1146/annurev.biochem.66.1.19. [DOI] [PubMed] [Google Scholar]
  27. Niranjanakumari S., Kurz J. C., Fierke C. A. Expression, purification and characterization of the recombinant ribonuclease P protein component from Bacillus subtilis. Nucleic Acids Res. 1998 Jul 1;26(13):3090–3096. doi: 10.1093/nar/26.13.3090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Niranjanakumari S., Stams T., Crary S. M., Christianson D. W., Fierke C. A. Protein component of the ribozyme ribonuclease P alters substrate recognition by directly contacting precursor tRNA. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15212–15217. doi: 10.1073/pnas.95.26.15212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pan T., Loria A., Zhong K. Probing of tertiary interactions in RNA: 2'-hydroxyl-base contacts between the RNase P RNA and pre-tRNA. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12510–12514. doi: 10.1073/pnas.92.26.12510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Reed R. E., Baer M. F., Guerrier-Takada C., Donis-Keller H., Altman S. Nucleotide sequence of the gene encoding the RNA subunit (M1 RNA) of ribonuclease P from Escherichia coli. Cell. 1982 Sep;30(2):627–636. doi: 10.1016/0092-8674(82)90259-8. [DOI] [PubMed] [Google Scholar]
  31. Reich C., Gardiner K. J., Olsen G. J., Pace B., Marsh T. L., Pace N. R. The RNA component of the Bacillus subtilis RNase P. Sequence, activity, and partial secondary structure. J Biol Chem. 1986 Jun 15;261(17):7888–7893. [PubMed] [Google Scholar]
  32. Smith D., Pace N. R. Multiple magnesium ions in the ribonuclease P reaction mechanism. Biochemistry. 1993 May 25;32(20):5273–5281. doi: 10.1021/bi00071a001. [DOI] [PubMed] [Google Scholar]
  33. Stams T., Niranjanakumari S., Fierke C. A., Christianson D. W. Ribonuclease P protein structure: evolutionary origins in the translational apparatus. Science. 1998 May 1;280(5364):752–755. doi: 10.1126/science.280.5364.752. [DOI] [PubMed] [Google Scholar]
  34. Thurlow D. L., Shilowski D., Marsh T. L. Nucleotides in precursor tRNAs that are required intact for catalysis by RNase P RNAs. Nucleic Acids Res. 1991 Feb 25;19(4):885–891. doi: 10.1093/nar/19.4.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wawrousek E. F., Narasimhan N., Hansen J. N. Two large clusters with thirty-seven transfer RNA genes adjacent to ribosomal RNA gene sets in Bacillus subtilis. Sequence and organization of trrnD and trrnE gene clusters. J Biol Chem. 1984 Mar 25;259(6):3694–3702. [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES