Skip to main content
RNA logoLink to RNA
. 2000 Oct;6(10):1423–1431. doi: 10.1017/s1355838200000935

A potential RNA drug target in the hepatitis C virus internal ribosomal entry site.

R Klinck 1, E Westhof 1, S Walker 1, M Afshar 1, A Collier 1, F Aboul-Ela 1
PMCID: PMC1370013  PMID: 11073218

Abstract

Subdomain IlId from the hepatitis C virus (HCV) internal ribosome entry site (IRES) has been shown to be essential for cap-independent translation. We have conducted a structural study of a 27-nt fragment, identical in sequence to IlId, to explore the structural features of this subdomain. The proposed secondary structure of IlId is comprised of two 3 bp helical regions separated by an internal loop and closed at one end by a 6-nt terminal loop. NMR and molecular modeling were used interactively to formulate a validated model of the three-dimensional structure of IlId. We found that this fragment contains several noncanonical structural motifs and non-Watson-Crick base pairs, some of which are common to other RNAs. In particular, a motif characteristic of the rRNA alpha-sarcin/ricin loop was located in the internal loop. The terminal loop, 5'-UUGGGU, was found to fold to form a trinucleotide loop closed by a trans-wobble U.G base pair. The sixth nucleotide was bulged out to allow stacking of this U.G pair on the adjacent helical region. In vivo mutational analysis in the context of the full IRES confirmed the importance of each structural motif within IIId for IRES function. These findings may provide clues as to host cellular proteins that play a role in IRES-directed translation and, in particular, the mechanism through which host ribosomes are sequestered for viral function.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain F. H., Varani G. Structure of the P1 helix from group I self-splicing introns. J Mol Biol. 1995 Jul 14;250(3):333–353. doi: 10.1006/jmbi.1995.0381. [DOI] [PubMed] [Google Scholar]
  2. Ban N., Nissen P., Hansen J., Capel M., Moore P. B., Steitz T. A. Placement of protein and RNA structures into a 5 A-resolution map of the 50S ribosomal subunit. Nature. 1999 Aug 26;400(6747):841–847. doi: 10.1038/23641. [DOI] [PubMed] [Google Scholar]
  3. Batey RT, Rambo RP, Doudna JA. Tertiary Motifs in RNA Structure and Folding. Angew Chem Int Ed Engl. 1999 Aug;38(16):2326–2343. doi: 10.1002/(sici)1521-3773(19990816)38:16<2326::aid-anie2326>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  4. Battiste J. L., Mao H., Rao N. S., Tan R., Muhandiram D. R., Kay L. E., Frankel A. D., Williamson J. R. Alpha helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex. Science. 1996 Sep 13;273(5281):1547–1551. doi: 10.1126/science.273.5281.1547. [DOI] [PubMed] [Google Scholar]
  5. Branch A. D., Benenfeld B. J., Robertson H. D. Ultraviolet light-induced crosslinking reveals a unique region of local tertiary structure in potato spindle tuber viroid and HeLa 5S RNA. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6590–6594. doi: 10.1073/pnas.82.19.6590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown E. A., Zhang H., Ping L. H., Lemon S. M. Secondary structure of the 5' nontranslated regions of hepatitis C virus and pestivirus genomic RNAs. Nucleic Acids Res. 1992 Oct 11;20(19):5041–5045. doi: 10.1093/nar/20.19.5041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bukh J., Purcell R. H., Miller R. H. Sequence analysis of the 5' noncoding region of hepatitis C virus. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):4942–4946. doi: 10.1073/pnas.89.11.4942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cate J. H., Yusupov M. M., Yusupova G. Z., Earnest T. N., Noller H. F. X-ray crystal structures of 70S ribosome functional complexes. Science. 1999 Sep 24;285(5436):2095–2104. doi: 10.1126/science.285.5436.2095. [DOI] [PubMed] [Google Scholar]
  9. Cheng J. W., Chou S. H., Reid B. R. Base pairing geometry in GA mismatches depends entirely on the neighboring sequence. J Mol Biol. 1992 Dec 20;228(4):1037–1041. doi: 10.1016/0022-2836(92)90312-8. [DOI] [PubMed] [Google Scholar]
  10. Cohen J. The scientific challenge of hepatitis C. Science. 1999 Jul 2;285(5424):26–30. doi: 10.1126/science.285.5424.26. [DOI] [PubMed] [Google Scholar]
  11. Collier A. J., Tang S., Elliott R. M. Translation efficiencies of the 5' untranslated region from representatives of the six major genotypes of hepatitis C virus using a novel bicistronic reporter assay system. J Gen Virol. 1998 Oct;79(Pt 10):2359–2366. doi: 10.1099/0022-1317-79-10-2359. [DOI] [PubMed] [Google Scholar]
  12. Conn G. L., Draper D. E., Lattman E. E., Gittis A. G. Crystal structure of a conserved ribosomal protein-RNA complex. Science. 1999 May 14;284(5417):1171–1174. doi: 10.1126/science.284.5417.1171. [DOI] [PubMed] [Google Scholar]
  13. Correll C. C., Munishkin A., Chan Y. L., Ren Z., Wool I. G., Steitz T. A. Crystal structure of the ribosomal RNA domain essential for binding elongation factors. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13436–13441. doi: 10.1073/pnas.95.23.13436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Correll C. C., Wool I. G., Munishkin A. The two faces of the Escherichia coli 23 S rRNA sarcin/ricin domain: the structure at 1.11 A resolution. J Mol Biol. 1999 Sep 17;292(2):275–287. doi: 10.1006/jmbi.1999.3072. [DOI] [PubMed] [Google Scholar]
  15. Dallas A., Moore P. B. The loop E-loop D region of Escherichia coli 5S rRNA: the solution structure reveals an unusual loop that may be important for binding ribosomal proteins. Structure. 1997 Dec 15;5(12):1639–1653. doi: 10.1016/s0969-2126(97)00311-0. [DOI] [PubMed] [Google Scholar]
  16. Fountain M. A., Serra M. J., Krugh T. R., Turner D. H. Structural features of a six-nucleotide RNA hairpin loop found in ribosomal RNA. Biochemistry. 1996 May 28;35(21):6539–6548. doi: 10.1021/bi952697k. [DOI] [PubMed] [Google Scholar]
  17. Honda M., Beard M. R., Ping L. H., Lemon S. M. A phylogenetically conserved stem-loop structure at the 5' border of the internal ribosome entry site of hepatitis C virus is required for cap-independent viral translation. J Virol. 1999 Feb;73(2):1165–1174. doi: 10.1128/jvi.73.2.1165-1174.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Houghton M., Selby M., Weiner A., Choo Q. L. Hepatitis C virus: structure, protein products and processing of the polyprotein precursor. Curr Stud Hematol Blood Transfus. 1994;(61):1–11. doi: 10.1159/000423264. [DOI] [PubMed] [Google Scholar]
  19. Jackson R. J., Howell M. T., Kaminski A. The novel mechanism of initiation of picornavirus RNA translation. Trends Biochem Sci. 1990 Dec;15(12):477–483. doi: 10.1016/0968-0004(90)90302-r. [DOI] [PubMed] [Google Scholar]
  20. Jiang L., Patel D. J. Solution structure of the tobramycin-RNA aptamer complex. Nat Struct Biol. 1998 Sep;5(9):769–774. doi: 10.1038/1804. [DOI] [PubMed] [Google Scholar]
  21. Kieft J. S., Zhou K., Jubin R., Murray M. G., Lau J. Y., Doudna J. A. The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J Mol Biol. 1999 Sep 24;292(3):513–529. doi: 10.1006/jmbi.1999.3095. [DOI] [PubMed] [Google Scholar]
  22. Leontis N. B., Westhof E. A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs. J Mol Biol. 1998 Oct 30;283(3):571–583. doi: 10.1006/jmbi.1998.2106. [DOI] [PubMed] [Google Scholar]
  23. Leontis N. B., Westhof E. Conserved geometrical base-pairing patterns in RNA. Q Rev Biophys. 1998 Nov;31(4):399–455. doi: 10.1017/s0033583599003479. [DOI] [PubMed] [Google Scholar]
  24. Lu M., Steitz T. A. Structure of Escherichia coli ribosomal protein L25 complexed with a 5S rRNA fragment at 1.8-A resolution. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2023–2028. doi: 10.1073/pnas.97.5.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
  26. Moka D., Vorreuther R., Schicha H., Spraul M., Humpfer E., Lipinski M., Foxall P. J., Nicholson J. K., Lindon J. C. Biochemical classification of kidney carcinoma biopsy samples using magic-angle-spinning 1H nuclear magnetic resonance spectroscopy. J Pharm Biomed Anal. 1998 May;17(1):125–132. doi: 10.1016/s0731-7085(97)00176-3. [DOI] [PubMed] [Google Scholar]
  27. Moore P. B. Structural motifs in RNA. Annu Rev Biochem. 1999;68:287–300. doi: 10.1146/annurev.biochem.68.1.287. [DOI] [PubMed] [Google Scholar]
  28. Ramos A., Gubser C. C., Varani G. Recent solution structures of RNA and its complexes with drugs, peptides and proteins. Curr Opin Struct Biol. 1997 Jun;7(3):317–323. doi: 10.1016/s0959-440x(97)80046-2. [DOI] [PubMed] [Google Scholar]
  29. Reynolds J. E., Kaminski A., Carroll A. R., Clarke B. E., Rowlands D. J., Jackson R. J. Internal initiation of translation of hepatitis C virus RNA: the ribosome entry site is at the authentic initiation codon. RNA. 1996 Sep;2(9):867–878. [PMC free article] [PubMed] [Google Scholar]
  30. Rijnbrand R. C., Abbink T. E., Haasnoot P. C., Spaan W. J., Bredenbeek P. J. The influence of AUG codons in the hepatitis C virus 5' nontranslated region on translation and mapping of the translation initiation window. Virology. 1996 Dec 1;226(1):47–56. doi: 10.1006/viro.1996.0626. [DOI] [PubMed] [Google Scholar]
  31. Saito I., Miyamura T., Ohbayashi A., Harada H., Katayama T., Kikuchi S., Watanabe Y., Koi S., Onji M., Ohta Y. Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6547–6549. doi: 10.1073/pnas.87.17.6547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stoldt M., Wöhnert J., Ohlenschläger O., Görlach M., Brown L. R. The NMR structure of the 5S rRNA E-domain-protein L25 complex shows preformed and induced recognition. EMBO J. 1999 Nov 15;18(22):6508–6521. doi: 10.1093/emboj/18.22.6508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Szewczak A. A., Moore P. B. The sarcin/ricin loop, a modular RNA. J Mol Biol. 1995 Mar 17;247(1):81–98. doi: 10.1006/jmbi.1994.0124. [DOI] [PubMed] [Google Scholar]
  34. Westhof E., Fritsch V. RNA folding: beyond Watson-Crick pairs. Structure. 2000 Mar 15;8(3):R55–R65. doi: 10.1016/s0969-2126(00)00112-x. [DOI] [PubMed] [Google Scholar]
  35. Wimberly B., Varani G., Tinoco I., Jr The conformation of loop E of eukaryotic 5S ribosomal RNA. Biochemistry. 1993 Feb 2;32(4):1078–1087. doi: 10.1021/bi00055a013. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES