Abstract
Ribosome recycling factor (RRF), in concert with elongation factor EF-G, is required for disassembly of the posttermination complex of the ribosome after release of polypeptides. The crystal structure of Thermus thermophilus RRF was determined at 2.6 A resolution. It is a tRNA-like L-shaped molecule consisting of two domains: a long three-helix bundle (domain 1) and a three-layer beta/alpha/beta sandwich (domain 2). Although the individual domain structures are similar to those of Thermotoga maritima RRF (Selmer et al., Science, 1999, 286:2349-2352), the interdomain angle differs by 33 degrees in two molecules, suggesting that the hinge between two domains is potentially flexible and responsive to different conditions of crystal packing. The hinge connects hydrophobic junctions of domains 1 and 2. The structure-based genetic analysis revealed the strong correlation between the hinge flexibility and the in vivo function of RRF. First, altering the hinge flexibility by making alanine or serine substitutions for large-size residues conserved at the hinge loop and nearby in domain 1 frequently gave rise to gain of function except a Pro residue conserved at the hinge loop. Second, the hinge defect resulting from a too relaxed hinge structure can be compensated for by secondary alterations in domain 1 that seem to increase the hydrophobic contact between domain 1 and the hinge loop. These results show that the hinge flexibility is vital for the function of RRF and that the steric interaction between the hinge loop and domains 1 and 2 restricts the interdomain angle and/or the hinge flexibility. These results indicate that RRF possesses an architectural difference from tRNA regardless of a resemblance to tRNA shape: RRF has a "gooseneck" elbow, whereas the tRNA elbow is rigid, and the direction of flex of RRF and tRNA is at a nearly right angle to each other. Moreover, surface electrostatic potentials of the two RRF proteins are dissimilar and do not mimic the surface potential of tRNA or EF-G. These properties will add a new insight into RRF, suggesting that RRF is more than a simple tRNA mimic.
Full Text
The Full Text of this article is available as a PDF (8.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agrawal R. K., Penczek P., Grassucci R. A., Frank J. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6134–6138. doi: 10.1073/pnas.95.11.6134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crawford D. J., Ito K., Nakamura Y., Tate W. P. Indirect regulation of translational termination efficiency at highly expressed genes and recoding sites by the factor recycling function of Escherichia coli release factor RF3. EMBO J. 1999 Feb 1;18(3):727–732. doi: 10.1093/emboj/18.3.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freistroffer D. V., Pavlov M. Y., MacDougall J., Buckingham R. H., Ehrenberg M. Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP-dependent manner. EMBO J. 1997 Jul 1;16(13):4126–4133. doi: 10.1093/emboj/16.13.4126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujiwara T., Ito K., Nakayashiki T., Nakamura Y. Amber mutations in ribosome recycling factors of Escherichia coli and Thermus thermophilus: evidence for C-terminal modulator element. FEBS Lett. 1999 Mar 26;447(2-3):297–302. doi: 10.1016/s0014-5793(99)00302-6. [DOI] [PubMed] [Google Scholar]
- Hirashima A., Kaji A. Factor-dependent release of ribosomes from messenger RNA. Requirement for two heat-stable factors. J Mol Biol. 1972 Mar 14;65(1):43–58. doi: 10.1016/0022-2836(72)90490-1. [DOI] [PubMed] [Google Scholar]
- Ito K., Uno M., Nakamura Y. A tripeptide 'anticodon' deciphers stop codons in messenger RNA. Nature. 2000 Feb 10;403(6770):680–684. doi: 10.1038/35001115. [DOI] [PubMed] [Google Scholar]
- Ito K., Uno M., Nakamura Y. Single amino acid substitution in prokaryote polypeptide release factor 2 permits it to terminate translation at all three stop codons. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8165–8169. doi: 10.1073/pnas.95.14.8165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janosi L., Hara H., Zhang S., Kaji A. Ribosome recycling by ribosome recycling factor (RRF)--an important but overlooked step of protein biosynthesis. Adv Biophys. 1996;32:121–201. doi: 10.1016/0065-227x(96)84743-5. [DOI] [PubMed] [Google Scholar]
- Janosi L., Mottagui-Tabar S., Isaksson L. A., Sekine Y., Ohtsubo E., Zhang S., Goon S., Nelken S., Shuda M., Kaji A. Evidence for in vivo ribosome recycling, the fourth step in protein biosynthesis. EMBO J. 1998 Feb 16;17(4):1141–1151. doi: 10.1093/emboj/17.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karimi R., Pavlov M. Y., Buckingham R. H., Ehrenberg M. Novel roles for classical factors at the interface between translation termination and initiation. Mol Cell. 1999 May;3(5):601–609. doi: 10.1016/s1097-2765(00)80353-6. [DOI] [PubMed] [Google Scholar]
- Kim K. K., Min K., Suh S. W. Crystal structure of the ribosome recycling factor from Escherichia coli. EMBO J. 2000 May 15;19(10):2362–2370. doi: 10.1093/emboj/19.10.2362. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumoto A., Tomimoto M., Go N. Dynamical structure of transfer RNA studied by normal mode analysis. Eur Biophys J. 1999;28(5):369–379. doi: 10.1007/s002490050221. [DOI] [PubMed] [Google Scholar]
- Nakamura Y., Ito K., Ehrenberg M. Mimicry grasps reality in translation termination. Cell. 2000 May 12;101(4):349–352. doi: 10.1016/s0092-8674(00)80845-4. [DOI] [PubMed] [Google Scholar]
- Nakamura Y., Ito K. How protein reads the stop codon and terminates translation. Genes Cells. 1998 May;3(5):265–278. doi: 10.1046/j.1365-2443.1998.00191.x. [DOI] [PubMed] [Google Scholar]
- Nakamura Y., Ito K., Isaksson L. A. Emerging understanding of translation termination. Cell. 1996 Oct 18;87(2):147–150. doi: 10.1016/s0092-8674(00)81331-8. [DOI] [PubMed] [Google Scholar]
- Nissen P., Kjeldgaard M., Nyborg J. Macromolecular mimicry. EMBO J. 2000 Feb 15;19(4):489–495. doi: 10.1093/emboj/19.4.489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Reshetnikova L., Clark B. F., Nyborg J. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science. 1995 Dec 1;270(5241):1464–1472. doi: 10.1126/science.270.5241.1464. [DOI] [PubMed] [Google Scholar]
- Oshima T., Ito K., Kabayama H., Nakamura Y. Regulation of lrp gene expression by H-NS and Lrp proteins in Escherichia coli: dominant negative mutations in lrp. Mol Gen Genet. 1995 Jun 10;247(5):521–528. doi: 10.1007/BF00290342. [DOI] [PubMed] [Google Scholar]
- Pavlov M. Y., Freistroffer D. V., MacDougall J., Buckingham R. H., Ehrenberg M. Fast recycling of Escherichia coli ribosomes requires both ribosome recycling factor (RRF) and release factor RF3. EMBO J. 1997 Jul 1;16(13):4134–4141. doi: 10.1093/emboj/16.13.4134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poole E. S., Brown C. M., Tate W. P. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J. 1995 Jan 3;14(1):151–158. doi: 10.1002/j.1460-2075.1995.tb06985.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rolland N., Janosi L., Block M. A., Shuda M., Teyssier E., Miège C., Chéniclet C., Carde J. P., Kaji A., Joyard J. Plant ribosome recycling factor homologue is a chloroplastic protein and is bactericidal in escherichia coli carrying temperature-sensitive ribosome recycling factor. Proc Natl Acad Sci U S A. 1999 May 11;96(10):5464–5469. doi: 10.1073/pnas.96.10.5464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruff M., Krishnaswamy S., Boeglin M., Poterszman A., Mitschler A., Podjarny A., Rees B., Thierry J. C., Moras D. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Science. 1991 Jun 21;252(5013):1682–1689. doi: 10.1126/science.2047877. [DOI] [PubMed] [Google Scholar]
- Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988 Jan 29;239(4839):487–491. doi: 10.1126/science.2448875. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Selmer M., Al-Karadaghi S., Hirokawa G., Kaji A., Liljas A. Crystal structure of Thermotoga maritima ribosome recycling factor: a tRNA mimic. Science. 1999 Dec 17;286(5448):2349–2352. doi: 10.1126/science.286.5448.2349. [DOI] [PubMed] [Google Scholar]
- Selmer M., Al-Karadaghi S., Hirokawa G., Kaji A., Liljas A. Crystal structure of Thermotoga maritima ribosome recycling factor: a tRNA mimic. Science. 1999 Dec 17;286(5448):2349–2352. doi: 10.1126/science.286.5448.2349. [DOI] [PubMed] [Google Scholar]
- Song H., Mugnier P., Das A. K., Webb H. M., Evans D. R., Tuite M. F., Hemmings B. A., Barford D. The crystal structure of human eukaryotic release factor eRF1--mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell. 2000 Feb 4;100(3):311–321. doi: 10.1016/s0092-8674(00)80667-4. [DOI] [PubMed] [Google Scholar]
- Wilson K. S., Noller H. F. Mapping the position of translational elongation factor EF-G in the ribosome by directed hydroxyl radical probing. Cell. 1998 Jan 9;92(1):131–139. doi: 10.1016/s0092-8674(00)80905-8. [DOI] [PubMed] [Google Scholar]
- Yamamoto M., Kumasaka T., Fujisawa T., Ueki T. Trichromatic Concept at SPring-8 RIKEN Beamline I. J Synchrotron Radiat. 1998 May 1;5(Pt 3):222–225. doi: 10.1107/S0909049597014738. [DOI] [PubMed] [Google Scholar]