Skip to main content
RNA logoLink to RNA
. 2000 Nov;6(11):1625–1634. doi: 10.1017/s1355838200001291

Nascent 60S ribosomal subunits enter the free pool bound by Nmd3p.

J H Ho 1, G Kallstrom 1, A W Johnson 1
PMCID: PMC1370031  PMID: 11105761

Abstract

Nmd3p from yeast is required for the export of the large (60S) ribosomal subunit from the nucleus (Ho et al., 2000). Here, we show that Nmd3p forms a stable complex with free 60S subunits. Using an epitope-tagged Nmd3p, we show that free 60S subunits can be coimmunoprecipitated with Nmd3p. The interaction was specific for 60S subunits; 40S subunits were not coimmunoprecipitated. Using this coprecipitation technique and pulse-chase labeling of ribosomal subunit proteins we showed that Nmd3p bound nascent subunits, consistent with its role in export. However, under conditions in which ribosome biogenesis was inhibited (e.g., inhibition of transcription with thiolutin, inhibition of transcription of ribosomal protein and RNA genes in a sly1-1 mutant at nonpermissive temperature, and inhibition of translation in a conditional prt1 mutant), Nmd3p remained associated with 60S subunits. In addition, Nmd3delta120, a truncated protein that lacked a nuclear localization signal, retained 60S binding. These results suggest that Nmd3p recruits nascent 60S subunits into the pool of free 60S subunits and exchanges on 60S subunits as they recycle during translation.

Full Text

The Full Text of this article is available as a PDF (561.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Belk J. P., He F., Jacobson A. Overexpression of truncated Nmd3p inhibits protein synthesis in yeast. RNA. 1999 Aug;5(8):1055–1070. doi: 10.1017/s1355838299990027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dennis P. P. Ancient ciphers: translation in Archaea. Cell. 1997 Jun 27;89(7):1007–1010. doi: 10.1016/s0092-8674(00)80288-3. [DOI] [PubMed] [Google Scholar]
  3. Eisinger D. P., Dick F. A., Trumpower B. L. Qsr1p, a 60S ribosomal subunit protein, is required for joining of 40S and 60S subunits. Mol Cell Biol. 1997 Sep;17(9):5136–5145. doi: 10.1128/mcb.17.9.5136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gaspin C., Cavaillé J., Erauso G., Bachellerie J. P. Archaeal homologs of eukaryotic methylation guide small nucleolar RNAs: lessons from the Pyrococcus genomes. J Mol Biol. 2000 Apr 7;297(4):895–906. doi: 10.1006/jmbi.2000.3593. [DOI] [PubMed] [Google Scholar]
  5. Görlich D., Kutay U. Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol. 1999;15:607–660. doi: 10.1146/annurev.cellbio.15.1.607. [DOI] [PubMed] [Google Scholar]
  6. Ho J. H., Johnson A. W. NMD3 encodes an essential cytoplasmic protein required for stable 60S ribosomal subunits in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Mar;19(3):2389–2399. doi: 10.1128/mcb.19.3.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jimenez A., Tipper D. J., Davies J. Mode of action of thiolutin, an inhibitor of macromolecular synthesis in Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1973 Jun;3(6):729–738. doi: 10.1128/aac.3.6.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Karl T., Onder K., Kodzius R., Pichová A., Wimmer H., Th r A., Hundsberger H., Löffler M., Klade T., Beyer A. GRC5 and NMD3 function in translational control of gene expression and interact genetically. Curr Genet. 1999 Jan;34(6):419–429. doi: 10.1007/s002940050416. [DOI] [PubMed] [Google Scholar]
  9. Kressler D., Doère M., Rojo M., Linder P. Synthetic lethality with conditional dbp6 alleles identifies rsa1p, a nucleoplasmic protein involved in the assembly of 60S ribosomal subunits. Mol Cell Biol. 1999 Dec;19(12):8633–8645. doi: 10.1128/mcb.19.12.8633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kressler D., Linder P., de La Cruz J. Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol Cell Biol. 1999 Dec;19(12):7897–7912. doi: 10.1128/mcb.19.12.7897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kyrpides N. C., Woese C. R. Universally conserved translation initiation factors. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):224–228. doi: 10.1073/pnas.95.1.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Longtine M. S., McKenzie A., 3rd, Demarini D. J., Shah N. G., Wach A., Brachat A., Philippsen P., Pringle J. R. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 1998 Jul;14(10):953–961. doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  13. Mattaj I. W., Englmeier L. Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem. 1998;67:265–306. doi: 10.1146/annurev.biochem.67.1.265. [DOI] [PubMed] [Google Scholar]
  14. Merrick W. C. Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev. 1992 Jun;56(2):291–315. doi: 10.1128/mr.56.2.291-315.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mizuta K., Warner J. R. Continued functioning of the secretory pathway is essential for ribosome synthesis. Mol Cell Biol. 1994 Apr;14(4):2493–2502. doi: 10.1128/mcb.14.4.2493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nakielny S., Dreyfuss G. Transport of proteins and RNAs in and out of the nucleus. Cell. 1999 Dec 23;99(7):677–690. doi: 10.1016/s0092-8674(00)81666-9. [DOI] [PubMed] [Google Scholar]
  17. Nguyen Y. H., Mills A. A., Stanbridge E. J. Assembly of the QM protein onto the 60S ribosomal subunit occurs in the cytoplasm. J Cell Biochem. 1998 Feb 1;68(2):281–285. [PubMed] [Google Scholar]
  18. Omer A. D., Lowe T. M., Russell A. G., Ebhardt H., Eddy S. R., Dennis P. P. Homologs of small nucleolar RNAs in Archaea. Science. 2000 Apr 21;288(5465):517–522. doi: 10.1126/science.288.5465.517. [DOI] [PubMed] [Google Scholar]
  19. Pain V. M. Initiation of protein synthesis in eukaryotic cells. Eur J Biochem. 1996 Mar 15;236(3):747–771. doi: 10.1111/j.1432-1033.1996.00747.x. [DOI] [PubMed] [Google Scholar]
  20. Pestova T. V., Lomakin I. B., Lee J. H., Choi S. K., Dever T. E., Hellen C. U. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature. 2000 Jan 20;403(6767):332–335. doi: 10.1038/35002118. [DOI] [PubMed] [Google Scholar]
  21. Raué H. A., Mager W. H., Planta R. J. Structural and functional analysis of yeast ribosomal proteins. Methods Enzymol. 1991;194:453–477. doi: 10.1016/0076-6879(91)94035-b. [DOI] [PubMed] [Google Scholar]
  22. Raué H. A., Planta R. J. Ribosome biogenesis in yeast. Prog Nucleic Acid Res Mol Biol. 1991;41:89–129. doi: 10.1016/s0079-6603(08)60007-0. [DOI] [PubMed] [Google Scholar]
  23. Rivlin A. A., Chan Y. L., Wool I. G. The contribution of a zinc finger motif to the function of yeast ribosomal protein YL37a. J Mol Biol. 1999 Dec 10;294(4):909–919. doi: 10.1006/jmbi.1999.3309. [DOI] [PubMed] [Google Scholar]
  24. Strässer K., Hurt E. Nuclear RNA export in yeast. FEBS Lett. 1999 Jun 4;452(1-2):77–81. doi: 10.1016/s0014-5793(99)00537-2. [DOI] [PubMed] [Google Scholar]
  25. Stutz F., Rosbash M. Nuclear RNA export. Genes Dev. 1998 Nov 1;12(21):3303–3319. doi: 10.1101/gad.12.21.3303. [DOI] [PubMed] [Google Scholar]
  26. Venema J., Tollervey D. Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet. 1999;33:261–311. doi: 10.1146/annurev.genet.33.1.261. [DOI] [PubMed] [Google Scholar]
  27. Voorma H. O., Thomas A. A., Van Heugten H. A. Initiation of protein synthesis in eukaryotes. Mol Biol Rep. 1994 May;19(3):139–145. doi: 10.1007/BF00986956. [DOI] [PubMed] [Google Scholar]
  28. Warner J. R. Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol Rev. 1989 Jun;53(2):256–271. doi: 10.1128/mr.53.2.256-271.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Warner J. R. The assembly of ribosomes in HeLa cells. J Mol Biol. 1966 Aug;19(2):383–398. doi: 10.1016/s0022-2836(66)80012-8. [DOI] [PubMed] [Google Scholar]
  30. Warner J. R. The assembly of ribosomes in yeast. J Biol Chem. 1971 Jan 25;246(2):447–454. [PubMed] [Google Scholar]
  31. Warner J. R. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 1999 Nov;24(11):437–440. doi: 10.1016/s0968-0004(99)01460-7. [DOI] [PubMed] [Google Scholar]
  32. Zinker S., Warner J. R. The ribosomal proteins of Saccharomyces cerevisiae. Phosphorylated and exchangeable proteins. J Biol Chem. 1976 Mar 25;251(6):1799–1807. [PubMed] [Google Scholar]
  33. Zuk D., Belk J. P., Jacobson A. Temperature-sensitive mutations in the Saccharomyces cerevisiae MRT4, GRC5, SLA2 and THS1 genes result in defects in mRNA turnover. Genetics. 1999 Sep;153(1):35–47. doi: 10.1093/genetics/153.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES