Abstract
Although rRNA synthesis, maturation, and assembly into preribosomal particles occur within the nucleolus, the route taken by pre-rRNAs from their synthetic sites toward the cytoplasm remains largely unexplored. Here, we employed a nondestructive method for the incorporation of BrUTP into the RNA of living cells. By using pulse-chase experiments, three-dimensional image reconstructions of confocal optical sections, and electron microscopy analysis of ultrathin sections, we were able to describe topological and spatial dynamics of rRNAs within the nucleolus. We identified the precise location and the volumic organization of four typical subdomains, in which rRNAs are successively moving towards the nucleolar periphery during their synthesis and processing steps. The incorporation of BrUTP takes place simultaneously within several tiny spheres, centered on the fibrillar centers. Then, the structures containing the newly synthesized RNAs enlarge and appear as compact ringlets disposed around the fibrillar centers. Later, they form hollow spheres surrounding the latter components and begin to fuse together. Finally, these structures widen and form large rings reaching the limits of the nucleoli. These results clearly show that the transport of pre-rRNAs within the nucleolus does not occur randomly, but appears as a radial flow starting from the fibrillar centers that form concentric rings, which finally fuse together as they progress toward the nucleolar periphery.
Full Text
The Full Text of this article is available as a PDF (5.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chu S., Archer R. H., Zengel J. M., Lindahl L. The RNA of RNase MRP is required for normal processing of ribosomal RNA. Proc Natl Acad Sci U S A. 1994 Jan 18;91(2):659–663. doi: 10.1073/pnas.91.2.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cmarko D., Verschure P. J., Martin T. E., Dahmus M. E., Krause S., Fu X. D., van Driel R., Fakan S. Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection. Mol Biol Cell. 1999 Jan;10(1):211–223. doi: 10.1091/mbc.10.1.211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daskal Y., Prestayko A. W., Busch H. Ultrastructural and biochemical studies of the isolated fibrillar component of nucleoli from Novikoff hepatoma ascites cells. Exp Cell Res. 1974 Sep;88(1):1–14. doi: 10.1016/0014-4827(74)90611-9. [DOI] [PubMed] [Google Scholar]
- Dundr M., Raska I. Nonisotopic ultrastructural mapping of transcription sites within the nucleolus. Exp Cell Res. 1993 Sep;208(1):275–281. doi: 10.1006/excr.1993.1247. [DOI] [PubMed] [Google Scholar]
- Fay F. S., Taneja K. L., Shenoy S., Lifshitz L., Singer R. H. Quantitative digital analysis of diffuse and concentrated nuclear distributions of nascent transcripts, SC35 and poly(A). Exp Cell Res. 1997 Feb 25;231(1):27–37. doi: 10.1006/excr.1996.3460. [DOI] [PubMed] [Google Scholar]
- Haukenes G., Szilvay A. M., Brokstad K. A., Kanestrøm A., Kalland K. H. Labeling of RNA transcripts of eukaryotic cells in culture with BrUTP using a liposome transfection reagent (DOTAP). Biotechniques. 1997 Feb;22(2):308–312. doi: 10.2144/97222st03. [DOI] [PubMed] [Google Scholar]
- Heliot L., Kaplan H., Lucas L., Klein C., Beorchia A., Doco-Fenzy M., Menager M., Thiry M., O'Donohue M. F., Ploton D. Electron tomography of metaphase nucleolar organizer regions: evidence for a twisted-loop organization. Mol Biol Cell. 1997 Nov;8(11):2199–2216. doi: 10.1091/mbc.8.11.2199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hozák P., Cook P. R., Schöfer C., Mosgöller W., Wachtler F. Site of transcription of ribosomal RNA and intranucleolar structure in HeLa cells. J Cell Sci. 1994 Feb;107(Pt 2):639–648. doi: 10.1242/jcs.107.2.639. [DOI] [PubMed] [Google Scholar]
- Hughes J. M. Functional base-pairing interaction between highly conserved elements of U3 small nucleolar RNA and the small ribosomal subunit RNA. J Mol Biol. 1996 Jun 21;259(4):645–654. doi: 10.1006/jmbi.1996.0346. [DOI] [PubMed] [Google Scholar]
- Iborra F. J., Jackson D. A., Cook P. R. The path of transcripts from extra-nucleolar synthetic sites to nuclear pores: transcripts in transit are concentrated in discrete structures containing SR proteins. J Cell Sci. 1998 Aug;111(Pt 15):2269–2282. doi: 10.1242/jcs.111.15.2269. [DOI] [PubMed] [Google Scholar]
- Iborra F. J., Pombo A., Jackson D. A., Cook P. R. Active RNA polymerases are localized within discrete transcription "factories' in human nuclei. J Cell Sci. 1996 Jun;109(Pt 6):1427–1436. doi: 10.1242/jcs.109.6.1427. [DOI] [PubMed] [Google Scholar]
- Jackson D. A., Hassan A. B., Errington R. J., Cook P. R. Visualization of focal sites of transcription within human nuclei. EMBO J. 1993 Mar;12(3):1059–1065. doi: 10.1002/j.1460-2075.1993.tb05747.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson M. R., Cao L. G., Wang Y. L., Pederson T. Dynamic localization of RNase MRP RNA in the nucleolus observed by fluorescent RNA cytochemistry in living cells. J Cell Biol. 1995 Dec;131(6 Pt 2):1649–1658. doi: 10.1083/jcb.131.6.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaneström A., Andresen V., Szilvay A. M., Kalland K. H., Haukenes G. Histographic recording of human immunodeficiency virus type 1 (HIV-1) regulatory protein Rev and nuclear factors. Arch Virol. 1998;143(2):279–294. doi: 10.1007/s007050050286. [DOI] [PubMed] [Google Scholar]
- Kass S., Tyc K., Steitz J. A., Sollner-Webb B. The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell. 1990 Mar 23;60(6):897–908. doi: 10.1016/0092-8674(90)90338-f. [DOI] [PubMed] [Google Scholar]
- Klein C., Cheutin T., O'Donohue M. F., Rothblum L., Kaplan H., Beorchia A., Lucas L., Héliot L., Ploton D. The three-dimensional study of chromosomes and upstream binding factor-immunolabeled nucleolar organizer regions demonstrates their nonrandom spatial arrangement during mitosis. Mol Biol Cell. 1998 Nov;9(11):3147–3159. doi: 10.1091/mbc.9.11.3147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koberna K., Stanek D., Malínský J., Eltsov M., Pliss A., Ctrnáctá V., Cermanová S., Raska I. Nuclear organization studied with the help of a hypotonic shift: its use permits hydrophilic molecules to enter into living cells. Chromosoma. 1999 Sep;108(5):325–335. doi: 10.1007/s004120050384. [DOI] [PubMed] [Google Scholar]
- Lamond A. I., Earnshaw W. C. Structure and function in the nucleus. Science. 1998 Apr 24;280(5363):547–553. doi: 10.1126/science.280.5363.547. [DOI] [PubMed] [Google Scholar]
- Lawrence J. B., Singer R. H., Marselle L. M. Highly localized tracks of specific transcripts within interphase nuclei visualized by in situ hybridization. Cell. 1989 May 5;57(3):493–502. doi: 10.1016/0092-8674(89)90924-0. [DOI] [PubMed] [Google Scholar]
- Lazdins I. B., Delannoy M., Sollner-Webb B. Analysis of nucleolar transcription and processing domains and pre-rRNA movements by in situ hybridization. Chromosoma. 1997 Jun;105(7-8):481–495. doi: 10.1007/BF02510485. [DOI] [PubMed] [Google Scholar]
- Masson C., Bouniol C., Fomproix N., Szöllösi M. S., Debey P., Hernandez-Verdun D. Conditions favoring RNA polymerase I transcription in permeabilized cells. Exp Cell Res. 1996 Jul 10;226(1):114–125. doi: 10.1006/excr.1996.0209. [DOI] [PubMed] [Google Scholar]
- Matera A. G., Tycowski K. T., Steitz J. A., Ward D. C. Organization of small nucleolar ribonucleoproteins (snoRNPs) by fluorescence in situ hybridization and immunocytochemistry. Mol Biol Cell. 1994 Dec;5(12):1289–1299. doi: 10.1091/mbc.5.12.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melcák I., Risueño M. C., Raska I. Ultrastructural nonisotopic mapping of nucleolar transcription sites in onion protoplasts. J Struct Biol. 1996 Mar-Apr;116(2):253–263. doi: 10.1006/jsbi.1996.0040. [DOI] [PubMed] [Google Scholar]
- Moss T., Stefanovsky V. Y. Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I. Prog Nucleic Acid Res Mol Biol. 1995;50:25–66. doi: 10.1016/s0079-6603(08)60810-7. [DOI] [PubMed] [Google Scholar]
- Ochs R. L., Lischwe M. A., Spohn W. H., Busch H. Fibrillarin: a new protein of the nucleolus identified by autoimmune sera. Biol Cell. 1985;54(2):123–133. doi: 10.1111/j.1768-322x.1985.tb00387.x. [DOI] [PubMed] [Google Scholar]
- Peculis B. A., Steitz J. A. Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in the Xenopus oocyte. Cell. 1993 Jun 18;73(6):1233–1245. doi: 10.1016/0092-8674(93)90651-6. [DOI] [PubMed] [Google Scholar]
- Pombo A., Jackson D. A., Hollinshead M., Wang Z., Roeder R. G., Cook P. R. Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III. EMBO J. 1999 Apr 15;18(8):2241–2253. doi: 10.1093/emboj/18.8.2241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Puvion-Dutilleul F., Mazan S., Nicoloso M., Christensen M. E., Bachellerie J. P. Localization of U3 RNA molecules in nucleoli of HeLa and mouse 3T3 cells by high resolution in situ hybridization. Eur J Cell Biol. 1991 Dec;56(2):178–186. [PubMed] [Google Scholar]
- Reimer G., Raska I., Scheer U., Tan E. M. Immunolocalization of 7-2-ribonucleoprotein in the granular component of the nucleolus. Exp Cell Res. 1988 May;176(1):117–128. doi: 10.1016/0014-4827(88)90126-7. [DOI] [PubMed] [Google Scholar]
- Royal A., Simard R. RNA synthesis in the ultrastructural and biochemical components of the nucleolus of Chinese hamster ovary cells. J Cell Biol. 1975 Sep;66(3):577–585. doi: 10.1083/jcb.66.3.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Savino R., Gerbi S. A. In vivo disruption of Xenopus U3 snRNA affects ribosomal RNA processing. EMBO J. 1990 Jul;9(7):2299–2308. doi: 10.1002/j.1460-2075.1990.tb07401.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scheer U., Hock R. Structure and function of the nucleolus. Curr Opin Cell Biol. 1999 Jun;11(3):385–390. doi: 10.1016/S0955-0674(99)80054-4. [DOI] [PubMed] [Google Scholar]
- Scheer U., Rose K. M. Localization of RNA polymerase I in interphase cells and mitotic chromosomes by light and electron microscopic immunocytochemistry. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1431–1435. doi: 10.1073/pnas.81.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmitt M. E., Clayton D. A. Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae. Mol Cell Biol. 1993 Dec;13(12):7935–7941. doi: 10.1128/mcb.13.12.7935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmittgen T. D., Danenberg K. D., Horikoshi T., Lenz H. J., Danenberg P. V. Effect of 5-fluoro- and 5-bromouracil substitution on the translation of human thymidylate synthase mRNA. J Biol Chem. 1994 Jun 10;269(23):16269–16275. [PubMed] [Google Scholar]
- Shaw P. J., Jordan E. G. The nucleolus. Annu Rev Cell Dev Biol. 1995;11:93–121. doi: 10.1146/annurev.cb.11.110195.000521. [DOI] [PubMed] [Google Scholar]
- Sierakowska H., Shukla R. R., Dominski Z., Kole R. Inhibition of pre-mRNA splicing by 5-fluoro-, 5-chloro-, and 5-bromouridine. J Biol Chem. 1989 Nov 15;264(32):19185–19191. [PubMed] [Google Scholar]
- Singer R. H., Green M. R. Compartmentalization of eukaryotic gene expression: causes and effects. Cell. 1997 Oct 31;91(3):291–294. doi: 10.1016/s0092-8674(00)80411-0. [DOI] [PubMed] [Google Scholar]
- Smith K. P., Moen P. T., Wydner K. L., Coleman J. R., Lawrence J. B. Processing of endogenous pre-mRNAs in association with SC-35 domains is gene specific. J Cell Biol. 1999 Feb 22;144(4):617–629. doi: 10.1083/jcb.144.4.617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spector D. L. Macromolecular domains within the cell nucleus. Annu Rev Cell Biol. 1993;9:265–315. doi: 10.1146/annurev.cb.09.110193.001405. [DOI] [PubMed] [Google Scholar]
- Strouboulis J., Wolffe A. P. Functional compartmentalization of the nucleus. J Cell Sci. 1996 Aug;109(Pt 8):1991–2000. doi: 10.1242/jcs.109.8.1991. [DOI] [PubMed] [Google Scholar]
- Vandelaer M., Thiry M., Goessens G. Isolation of nucleoli from ELT cells: a quick new method that preserves morphological integrity and high transcriptional activity. Exp Cell Res. 1996 Oct 10;228(1):125–131. doi: 10.1006/excr.1996.0307. [DOI] [PubMed] [Google Scholar]
- Wansink D. G., Nelissen R. L., de Jong L. In vitro splicing of pre-mRNA containing bromouridine. Mol Biol Rep. 1994 Mar;19(2):109–113. doi: 10.1007/BF00997156. [DOI] [PubMed] [Google Scholar]
- Wansink D. G., Schul W., van der Kraan I., van Steensel B., van Driel R., de Jong L. Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol. 1993 Jul;122(2):283–293. doi: 10.1083/jcb.122.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wei X., Somanathan S., Samarabandu J., Berezney R. Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles. J Cell Biol. 1999 Aug 9;146(3):543–558. doi: 10.1083/jcb.146.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
