Skip to main content
RNA logoLink to RNA
. 2000 Dec;6(12):1808–1820. doi: 10.1017/s1355838200001539

Structure and function of a cap-independent translation element that functions in either the 3' or the 5' untranslated region.

L Guo 1, E Allen 1, W A Miller 1
PMCID: PMC1370050  PMID: 11142380

Abstract

Barley yellow dwarf virus RNA lacks both a 5' cap and a poly(A) tail, yet it is translated efficiently. It contains a cap-independent translation element (TE), located in the 3' UTR, that confers efficient translation initiation at the AUG closest to the 5' end of the mRNA. We propose that the TE must both recruit ribosomes and facilitate 3'-5' communication. To dissect its function, we determined the secondary structure of the TE and roles of domains within it. Nuclease probing and structure-directed mutagenesis revealed that the 105-nt TE (TE105) forms a cruciform secondary structure containing four helices connected by single-stranded regions. TE105 can function in either UTR in wheat germ translation extracts. A longer viral sequence (at most 869 nt) is required for full cap-independent translation in plant cells. However, substantial translation of uncapped mRNAs can be obtained in plant cells with TE105 combined with a poly(A) tail. All secondary structural elements and most primary sequences that were mutated are required for cap-independent translation in the 3' and 5' UTR contexts. A seven-base loop sequence was needed only in the 3' UTR context. Thus, this loop sequence may be involved only in communication between the UTRs and not directly in recruiting translational machinery. This structural and functional analysis provides a framework for understanding an emerging class of cap-independent translation elements distinguished by their location in the 3' UTR.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali N., Siddiqui A. Interaction of polypyrimidine tract-binding protein with the 5' noncoding region of the hepatitis C virus RNA genome and its functional requirement in internal initiation of translation. J Virol. 1995 Oct;69(10):6367–6375. doi: 10.1128/jvi.69.10.6367-6375.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen E., Wang S., Miller W. A. Barley yellow dwarf virus RNA requires a cap-independent translation sequence because it lacks a 5' cap. Virology. 1999 Jan 20;253(2):139–144. doi: 10.1006/viro.1998.9507. [DOI] [PubMed] [Google Scholar]
  3. Beelman C. A., Parker R. Degradation of mRNA in eukaryotes. Cell. 1995 Apr 21;81(2):179–183. doi: 10.1016/0092-8674(95)90326-7. [DOI] [PubMed] [Google Scholar]
  4. Belsham G. J., Sonenberg N. RNA-protein interactions in regulation of picornavirus RNA translation. Microbiol Rev. 1996 Sep;60(3):499–511. doi: 10.1128/mr.60.3.499-511.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Browning K. S. The plant translational apparatus. Plant Mol Biol. 1996 Oct;32(1-2):107–144. doi: 10.1007/BF00039380. [DOI] [PubMed] [Google Scholar]
  6. Carberry S. E., Darzynkiewicz E., Goss D. J. A comparison of the binding of methylated cap analogues to wheat germ protein synthesis initiation factors 4F and (iso)4F. Biochemistry. 1991 Feb 12;30(6):1624–1627. doi: 10.1021/bi00220a026. [DOI] [PubMed] [Google Scholar]
  7. Chalhoub B. A., Kelly L., Robaglia C., Lapierre H. D. Sequence variability in the genome-3'-terminal region of BYDV for 10 geographically distinct PAV-like isolates of barley yellow dwarf virus: analysis of the ORF6 variation. Arch Virol. 1994;139(3-4):403–416. doi: 10.1007/BF01310801. [DOI] [PubMed] [Google Scholar]
  8. Chappell S. A., Edelman G. M., Mauro V. P. A 9-nt segment of a cellular mRNA can function as an internal ribosome entry site (IRES) and when present in linked multiple copies greatly enhances IRES activity. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1536–1541. doi: 10.1073/pnas.97.4.1536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Craig A. W., Haghighat A., Yu A. T., Sonenberg N. Interaction of polyadenylate-binding protein with the eIF4G homologue PAIP enhances translation. Nature. 1998 Apr 2;392(6675):520–523. doi: 10.1038/33198. [DOI] [PubMed] [Google Scholar]
  10. Danthinne X., Seurinck J., Meulewaeter F., Van Montagu M., Cornelissen M. The 3' untranslated region of satellite tobacco necrosis virus RNA stimulates translation in vitro. Mol Cell Biol. 1993 Jun;13(6):3340–3349. doi: 10.1128/mcb.13.6.3340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Deo R. C., Bonanno J. B., Sonenberg N., Burley S. K. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell. 1999 Sep 17;98(6):835–845. doi: 10.1016/s0092-8674(00)81517-2. [DOI] [PubMed] [Google Scholar]
  12. Dever T. E. Translation initiation: adept at adapting. Trends Biochem Sci. 1999 Oct;24(10):398–403. doi: 10.1016/s0968-0004(99)01457-7. [DOI] [PubMed] [Google Scholar]
  13. Doel M. T., Carey N. H. The translational capacity of deadenylated ovalbumin messenger RNA. Cell. 1976 May;8(1):51–58. doi: 10.1016/0092-8674(76)90184-7. [DOI] [PubMed] [Google Scholar]
  14. Gallie D. R., Kobayashi M. The role of the 3'-untranslated region of non-polyadenylated plant viral mRNAs in regulating translational efficiency. Gene. 1994 May 16;142(2):159–165. doi: 10.1016/0378-1119(94)90256-9. [DOI] [PubMed] [Google Scholar]
  15. Gallie D. R., Lewis N. J., Marzluff W. F. The histone 3'-terminal stem-loop is necessary for translation in Chinese hamster ovary cells. Nucleic Acids Res. 1996 May 15;24(10):1954–1962. doi: 10.1093/nar/24.10.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gallie D. R., Lucas W. J., Walbot V. Visualizing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation. Plant Cell. 1989 Mar;1(3):301–311. doi: 10.1105/tpc.1.3.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gallie D. R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 1991 Nov;5(11):2108–2116. doi: 10.1101/gad.5.11.2108. [DOI] [PubMed] [Google Scholar]
  18. Gallie D. R., Walbot V. RNA pseudoknot domain of tobacco mosaic virus can functionally substitute for a poly(A) tail in plant and animal cells. Genes Dev. 1990 Jul;4(7):1149–1157. doi: 10.1101/gad.4.7.1149. [DOI] [PubMed] [Google Scholar]
  19. Goodwin EB, Evans TC. Translational control of development in C. elegans. Semin Cell Dev Biol. 1997 Dec;8(6):551–559. doi: 10.1006/scdb.1997.0180. [DOI] [PubMed] [Google Scholar]
  20. Gradi A., Imataka H., Svitkin Y. V., Rom E., Raught B., Morino S., Sonenberg N. A novel functional human eukaryotic translation initiation factor 4G. Mol Cell Biol. 1998 Jan;18(1):334–342. doi: 10.1128/mcb.18.1.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Gray N. K., Wickens M. Control of translation initiation in animals. Annu Rev Cell Dev Biol. 1998;14:399–458. doi: 10.1146/annurev.cellbio.14.1.399. [DOI] [PubMed] [Google Scholar]
  22. Gunkel N., Yano T., Markussen F. H., Olsen L. C., Ephrussi A. Localization-dependent translation requires a functional interaction between the 5' and 3' ends of oskar mRNA. Genes Dev. 1998 Jun 1;12(11):1652–1664. doi: 10.1101/gad.12.11.1652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hentze M. W. eIF4G: a multipurpose ribosome adapter? Science. 1997 Jan 24;275(5299):500–501. doi: 10.1126/science.275.5299.500. [DOI] [PubMed] [Google Scholar]
  24. Hosfield D. J., Mol C. D., Shen B., Tainer J. A. Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity. Cell. 1998 Oct 2;95(1):135–146. doi: 10.1016/s0092-8674(00)81789-4. [DOI] [PubMed] [Google Scholar]
  25. Hu M. C., Tranque P., Edelman G. M., Mauro V. P. rRNA-complementarity in the 5' untranslated region of mRNA specifying the Gtx homeodomain protein: evidence that base- pairing to 18S rRNA affects translational efficiency. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1339–1344. doi: 10.1073/pnas.96.4.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ito T., Lai M. M. Determination of the secondary structure of and cellular protein binding to the 3'-untranslated region of the hepatitis C virus RNA genome. J Virol. 1997 Nov;71(11):8698–8706. doi: 10.1128/jvi.71.11.8698-8706.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ito T., Tahara S. M., Lai M. M. The 3'-untranslated region of hepatitis C virus RNA enhances translation from an internal ribosomal entry site. J Virol. 1998 Nov;72(11):8789–8796. doi: 10.1128/jvi.72.11.8789-8796.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jackson R. J., Kaminski A. Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA. 1995 Dec;1(10):985–1000. [PMC free article] [PubMed] [Google Scholar]
  29. Johannes G., Sarnow P. Cap-independent polysomal association of natural mRNAs encoding c-myc, BiP, and eIF4G conferred by internal ribosome entry sites. RNA. 1998 Dec;4(12):1500–1513. doi: 10.1017/s1355838298981080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Koev G., Miller W. A. A positive-strand RNA virus with three very different subgenomic RNA promoters. J Virol. 2000 Jul;74(13):5988–5996. doi: 10.1128/jvi.74.13.5988-5996.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kolupaeva V. G., Pestova T. V., Hellen C. U., Shatsky I. N. Translation eukaryotic initiation factor 4G recognizes a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. J Biol Chem. 1998 Jul 17;273(29):18599–18604. doi: 10.1074/jbc.273.29.18599. [DOI] [PubMed] [Google Scholar]
  32. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Le H., Tanguay R. L., Balasta M. L., Wei C. C., Browning K. S., Metz A. M., Goss D. J., Gallie D. R. Translation initiation factors eIF-iso4G and eIF-4B interact with the poly(A)-binding protein and increase its RNA binding activity. J Biol Chem. 1997 Jun 27;272(26):16247–16255. doi: 10.1074/jbc.272.26.16247. [DOI] [PubMed] [Google Scholar]
  34. Leathers V., Tanguay R., Kobayashi M., Gallie D. R. A phylogenetically conserved sequence within viral 3' untranslated RNA pseudoknots regulates translation. Mol Cell Biol. 1993 Sep;13(9):5331–5347. doi: 10.1128/mcb.13.9.5331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Legault P., Li J., Mogridge J., Kay L. E., Greenblatt J. NMR structure of the bacteriophage lambda N peptide/boxB RNA complex: recognition of a GNRA fold by an arginine-rich motif. Cell. 1998 Apr 17;93(2):289–299. doi: 10.1016/s0092-8674(00)81579-2. [DOI] [PubMed] [Google Scholar]
  36. Lesnaw J. A., Reichmann M. E. Identity of the 5'-terminal RNA nucleotide sequence of the satellite tobacco necrosis virus and its helper virus: possible role of the 5'-terminus in the recognition by virus-specific RNA replicase. Proc Natl Acad Sci U S A. 1970 May;66(1):140–145. doi: 10.1073/pnas.66.1.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Macejak D. G., Sarnow P. Internal initiation of translation mediated by the 5' leader of a cellular mRNA. Nature. 1991 Sep 5;353(6339):90–94. doi: 10.1038/353090a0. [DOI] [PubMed] [Google Scholar]
  38. Mader S., Lee H., Pause A., Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol. 1995 Sep;15(9):4990–4997. doi: 10.1128/mcb.15.9.4990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Marcotrigiano J., Gingras A. C., Sonenberg N., Burley S. K. Cocrystal structure of the messenger RNA 5' cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell. 1997 Jun 13;89(6):951–961. doi: 10.1016/s0092-8674(00)80280-9. [DOI] [PubMed] [Google Scholar]
  40. Meulewaeter F., Danthinne X., Van Montagu M., Cornelissen M. 5'- and 3'-sequences of satellite tobacco necrosis virus RNA promoting translation in tobacco. Plant J. 1998 Apr;14(2):169–176. doi: 10.1046/j.1365-313x.1998.00104.x. [DOI] [PubMed] [Google Scholar]
  41. Miller W. A., Silver S. L. Alternative tertiary structure attenuates self-cleavage of the ribozyme in the satellite RNA of barley yellow dwarf virus. Nucleic Acids Res. 1991 Oct 11;19(19):5313–5320. doi: 10.1093/nar/19.19.5313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Pestova T. V., Hellen C. U., Shatsky I. N. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol. 1996 Dec;16(12):6859–6869. doi: 10.1128/mcb.16.12.6859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Pilipenko E. V., Gmyl A. P., Maslova S. V., Svitkin Y. V., Sinyakov A. N., Agol V. I. Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus RNA. Cell. 1992 Jan 10;68(1):119–131. doi: 10.1016/0092-8674(92)90211-t. [DOI] [PubMed] [Google Scholar]
  44. Poole T. L., Wang C., Popp R. A., Potgieter L. N., Siddiqui A., Collett M. S. Pestivirus translation initiation occurs by internal ribosome entry. Virology. 1995 Jan 10;206(1):750–754. doi: 10.1016/s0042-6822(95)80003-4. [DOI] [PubMed] [Google Scholar]
  45. Preiss T., Hentze M. W. From factors to mechanisms: translation and translational control in eukaryotes. Curr Opin Genet Dev. 1999 Oct;9(5):515–521. doi: 10.1016/s0959-437x(99)00005-2. [DOI] [PubMed] [Google Scholar]
  46. Preiss T., Muckenthaler M., Hentze M. W. Poly(A)-tail-promoted translation in yeast: implications for translational control. RNA. 1998 Nov;4(11):1321–1331. doi: 10.1017/s1355838298980669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Priano C., Arora R., Jayant L., Mills D. R. Translational activation in coliphage Qbeta: on a polycistronic messenger RNA, repression of one gene can activate translation of another. J Mol Biol. 1997 Aug 22;271(3):299–310. doi: 10.1006/jmbi.1997.1194. [DOI] [PubMed] [Google Scholar]
  48. Qu F., Morris T. J. Cap-independent translational enhancement of turnip crinkle virus genomic and subgenomic RNAs. J Virol. 2000 Feb;74(3):1085–1093. doi: 10.1128/jvi.74.3.1085-1093.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Reynolds J. E., Kaminski A., Kettinen H. J., Grace K., Clarke B. E., Carroll A. R., Rowlands D. J., Jackson R. J. Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J. 1995 Dec 1;14(23):6010–6020. doi: 10.1002/j.1460-2075.1995.tb00289.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sachs A. B., Davis R. W., Kornberg R. D. A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability. Mol Cell Biol. 1987 Sep;7(9):3268–3276. doi: 10.1128/mcb.7.9.3268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Scheper G. C., Voorma H. O., Thomas A. A. Basepairing with 18S ribosomal RNA in internal initiation of translation. FEBS Lett. 1994 Oct 3;352(3):271–275. doi: 10.1016/0014-5793(94)00975-9. [DOI] [PubMed] [Google Scholar]
  52. Skulachev M. V., Ivanov P. A., Karpova O. V., Korpela T., Rodionova N. P., Dorokhov Y. L., Atabekov J. G. Internal initiation of translation directed by the 5'-untranslated region of the tobamovirus subgenomic RNA I(2). Virology. 1999 Oct 10;263(1):139–154. doi: 10.1006/viro.1999.9928. [DOI] [PubMed] [Google Scholar]
  53. Sonoda J., Wharton R. P. Recruitment of Nanos to hunchback mRNA by Pumilio. Genes Dev. 1999 Oct 15;13(20):2704–2712. doi: 10.1101/gad.13.20.2704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Tanguay R. L., Gallie D. R. Isolation and characterization of the 102-kilodalton RNA-binding protein that binds to the 5' and 3' translational enhancers of tobacco mosaic virus RNA. J Biol Chem. 1996 Jun 14;271(24):14316–14322. doi: 10.1074/jbc.271.24.14316. [DOI] [PubMed] [Google Scholar]
  55. Tarun S. Z., Jr, Sachs A. B. A common function for mRNA 5' and 3' ends in translation initiation in yeast. Genes Dev. 1995 Dec 1;9(23):2997–3007. doi: 10.1101/gad.9.23.2997. [DOI] [PubMed] [Google Scholar]
  56. Tarun S. Z., Jr, Sachs A. B. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 1996 Dec 16;15(24):7168–7177. [PMC free article] [PubMed] [Google Scholar]
  57. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Timmer R. T., Benkowski L. A., Schodin D., Lax S. R., Metz A. M., Ravel J. M., Browning K. S. The 5' and 3' untranslated regions of satellite tobacco necrosis virus RNA affect translational efficiency and dependence on a 5' cap structure. J Biol Chem. 1993 May 5;268(13):9504–9510. [PubMed] [Google Scholar]
  59. Tsukiyama-Kohara K., Iizuka N., Kohara M., Nomoto A. Internal ribosome entry site within hepatitis C virus RNA. J Virol. 1992 Mar;66(3):1476–1483. doi: 10.1128/jvi.66.3.1476-1483.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Vende P., Piron M., Castagné N., Poncet D. Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3' end. J Virol. 2000 Aug;74(15):7064–7071. doi: 10.1128/jvi.74.15.7064-7071.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Verrier S. B., Jean-Jean O. Complementarity between the mRNA 5' untranslated region and 18S ribosomal RNA can inhibit translation. RNA. 2000 Apr;6(4):584–597. doi: 10.1017/s1355838200992239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Vlassov V. V., Zuber G., Felden B., Behr J. P., Giegé R. Cleavage of tRNA with imidazole and spermine imidazole constructs: a new approach for probing RNA structure. Nucleic Acids Res. 1995 Aug 25;23(16):3161–3167. doi: 10.1093/nar/23.16.3161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Wang C., Sarnow P., Siddiqui A. Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J Virol. 1993 Jun;67(6):3338–3344. doi: 10.1128/jvi.67.6.3338-3344.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Wang S., Browning K. S., Miller W. A. A viral sequence in the 3'-untranslated region mimics a 5' cap in facilitating translation of uncapped mRNA. EMBO J. 1997 Jul 1;16(13):4107–4116. doi: 10.1093/emboj/16.13.4107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Wang S., Guo L., Allen E., Miller W. A. A potential mechanism for selective control of cap-independent translation by a viral RNA sequence in cis and in trans. RNA. 1999 Jun;5(6):728–738. doi: 10.1017/s1355838299981979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Wang S., Miller W. A. A sequence located 4.5 to 5 kilobases from the 5' end of the barley yellow dwarf virus (PAV) genome strongly stimulates translation of uncapped mRNA. J Biol Chem. 1995 Jun 2;270(22):13446–13452. doi: 10.1074/jbc.270.22.13446. [DOI] [PubMed] [Google Scholar]
  67. Wells S. E., Hillner P. E., Vale R. D., Sachs A. B. Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell. 1998 Jul;2(1):135–140. doi: 10.1016/s1097-2765(00)80122-7. [DOI] [PubMed] [Google Scholar]
  68. Wu B., White K. A. A primary determinant of cap-independent translation is located in the 3'-proximal region of the tomato bushy stunt virus genome. J Virol. 1999 Nov;73(11):8982–8988. doi: 10.1128/jvi.73.11.8982-8988.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES