Skip to main content
RNA logoLink to RNA
. 2000 Dec;6(12):1882–1894. doi: 10.1017/s1355838200001254

The bI4 group I intron binds directly to both its protein splicing partners, a tRNA synthetase and maturase, to facilitate RNA splicing activity.

S B Rho 1, S A Martinis 1
PMCID: PMC1370056  PMID: 11142386

Abstract

The imported mitochondrial leucyl-tRNA synthetase (NAM2p) and a mitochondrial-expressed intron-encoded maturase protein are required for splicing the fourth intron (bI4) of the yeast cob gene, which expresses an electron transfer protein that is essential to respiration. However, the role of the tRNA synthetase, as well as the function of the bI4 maturase, remain unclear. As a first step towards elucidating the mechanistic role of these protein splicing factors in this group I intron splicing reaction, we tested the hypothesis that both leucyl-tRNA synthetase and bI4 maturase interact directly with the bI4 intron. We developed a yeast three-hybrid system and determined that both the tRNA synthetase and bI4 maturase can bind directly and independently via RNA-protein interactions to the large bI4 group I intron. We also showed, using modified two-hybrid and three-hybrid assays, that the bI4 intron bridges interactions between the two protein splicing partners. In the presence of either the bI4 maturase or the Leu-tRNA synthetase, bI4 intron transcribed recombinantly with flanking exons in the yeast nucleus exhibited splicing activity. These data combined with previous genetic results are consistent with a novel model for a ternary splicing complex (two protein: one RNA) in which both protein splicing partners bind directly to the bI4 intron and facilitate its self-splicing activity.

Full Text

The Full Text of this article is available as a PDF (957.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akins R. A., Lambowitz A. M. A protein required for splicing group I introns in Neurospora mitochondria is mitochondrial tyrosyl-tRNA synthetase or a derivative thereof. Cell. 1987 Jul 31;50(3):331–345. doi: 10.1016/0092-8674(87)90488-0. [DOI] [PubMed] [Google Scholar]
  2. Bardwell V. J., Wickens M. Purification of RNA and RNA-protein complexes by an R17 coat protein affinity method. Nucleic Acids Res. 1990 Nov 25;18(22):6587–6594. doi: 10.1093/nar/18.22.6587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Belfort M., Roberts R. J. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 1997 Sep 1;25(17):3379–3388. doi: 10.1093/nar/25.17.3379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bousquet I., Dujardin G., Poyton R. O., Slonimski P. P. Two group I mitochondrial introns in the cob-box and coxI genes require the same MRS1/PET157 nuclear gene product for splicing. Curr Genet. 1990 Aug;18(2):117–124. doi: 10.1007/BF00312599. [DOI] [PubMed] [Google Scholar]
  5. Caprara M. G., Lehnert V., Lambowitz A. M., Westhof E. A tyrosyl-tRNA synthetase recognizes a conserved tRNA-like structural motif in the group I intron catalytic core. Cell. 1996 Dec 13;87(6):1135–1145. doi: 10.1016/s0092-8674(00)81807-3. [DOI] [PubMed] [Google Scholar]
  6. Caprara M. G., Mohr G., Lambowitz A. M. A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core. J Mol Biol. 1996 Apr 5;257(3):512–531. doi: 10.1006/jmbi.1996.0182. [DOI] [PubMed] [Google Scholar]
  7. Cherniack A. D., Garriga G., Kittle J. D., Jr, Akins R. A., Lambowitz A. M. Function of Neurospora mitochondrial tyrosyl-tRNA synthetase in RNA splicing requires an idiosyncratic domain not found in other synthetases. Cell. 1990 Aug 24;62(4):745–755. doi: 10.1016/0092-8674(90)90119-y. [DOI] [PubMed] [Google Scholar]
  8. Conrad-Webb H., Perlman P. S., Zhu H., Butow R. A. The nuclear SUV3-1 mutation affects a variety of post-transcriptional processes in yeast mitochondria. Nucleic Acids Res. 1990 Mar 25;18(6):1369–1376. doi: 10.1093/nar/18.6.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Costanzo M. C., Seaver E. C., Fox T. D. At least two nuclear gene products are specifically required for translation of a single yeast mitochondrial mRNA. EMBO J. 1986 Dec 20;5(13):3637–3641. doi: 10.1002/j.1460-2075.1986.tb04693.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De La Salle H., Jacq C., Slonimski P. P. Critical sequences within mitochondrial introns: pleiotropic mRNA maturase and cis-dominant signals of the box intron controlling reductase and oxidase. Cell. 1982 Apr;28(4):721–732. doi: 10.1016/0092-8674(82)90051-4. [DOI] [PubMed] [Google Scholar]
  11. Delahodde A., Goguel V., Becam A. M., Creusot F., Perea J., Banroques J., Jacq C. Site-specific DNA endonuclease and RNA maturase activities of two homologous intron-encoded proteins from yeast mitochondria. Cell. 1989 Feb 10;56(3):431–441. doi: 10.1016/0092-8674(89)90246-8. [DOI] [PubMed] [Google Scholar]
  12. Dhawale S., Hanson D. K., Alexander N. J., Perlman P. S., Mahler H. R. Regulatory interactions between mitochondrial genes: interactions between two mosaic genes. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1778–1782. doi: 10.1073/pnas.78.3.1778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Duan X., Gimble F. S., Quiocho F. A. Crystal structure of PI-SceI, a homing endonuclease with protein splicing activity. Cell. 1997 May 16;89(4):555–564. doi: 10.1016/s0092-8674(00)80237-8. [DOI] [PubMed] [Google Scholar]
  14. Fields S., Song O. A novel genetic system to detect protein-protein interactions. Nature. 1989 Jul 20;340(6230):245–246. doi: 10.1038/340245a0. [DOI] [PubMed] [Google Scholar]
  15. Gampel A., Cech T. R. Binding of the CBP2 protein to a yeast mitochondrial group I intron requires the catalytic core of the RNA. Genes Dev. 1991 Oct;5(10):1870–1880. doi: 10.1101/gad.5.10.1870. [DOI] [PubMed] [Google Scholar]
  16. Gampel A., Nishikimi M., Tzagoloff A. CBP2 protein promotes in vitro excision of a yeast mitochondrial group I intron. Mol Cell Biol. 1989 Dec;9(12):5424–5433. doi: 10.1128/mcb.9.12.5424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gimble F. S., Duan X., Hu D., Quiocho F. A. Identification of Lys-403 in the PI-SceI homing endonuclease as part of a symmetric catalytic center. J Biol Chem. 1998 Nov 13;273(46):30524–30529. doi: 10.1074/jbc.273.46.30524. [DOI] [PubMed] [Google Scholar]
  18. Goguel V., Delahodde A., Jacq C. Connections between RNA splicing and DNA intron mobility in yeast mitochondria: RNA maturase and DNA endonuclease switching experiments. Mol Cell Biol. 1992 Feb;12(2):696–705. doi: 10.1128/mcb.12.2.696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Guo Q., Lambowitz A. M. A tyrosyl-tRNA synthetase binds specifically to the group I intron catalytic core. Genes Dev. 1992 Aug;6(8):1357–1372. doi: 10.1101/gad.6.8.1357. [DOI] [PubMed] [Google Scholar]
  20. Gyuris J., Golemis E., Chertkov H., Brent R. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell. 1993 Nov 19;75(4):791–803. doi: 10.1016/0092-8674(93)90498-f. [DOI] [PubMed] [Google Scholar]
  21. He Z., Crist M., Yen H., Duan X., Quiocho F. A., Gimble F. S. Amino acid residues in both the protein splicing and endonuclease domains of the PI-SceI intein mediate DNA binding. J Biol Chem. 1998 Feb 20;273(8):4607–4615. doi: 10.1074/jbc.273.8.4607. [DOI] [PubMed] [Google Scholar]
  22. Heath P. J., Stephens K. M., Monnat R. J., Jr, Stoddard B. L. The structure of I-Crel, a group I intron-encoded homing endonuclease. Nat Struct Biol. 1997 Jun;4(6):468–476. doi: 10.1038/nsb0697-468. [DOI] [PubMed] [Google Scholar]
  23. Henke R. M., Butow R. A., Perlman P. S. Maturase and endonuclease functions depend on separate conserved domains of the bifunctional protein encoded by the group I intron aI4 alpha of yeast mitochondrial DNA. EMBO J. 1995 Oct 16;14(20):5094–5099. doi: 10.1002/j.1460-2075.1995.tb00191.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Herbert C. J., Labouesse M., Dujardin G., Slonimski P. P. The NAM2 proteins from S. cerevisiae and S. douglasii are mitochondrial leucyl-tRNA synthetases, and are involved in mRNA splicing. EMBO J. 1988 Feb;7(2):473–483. doi: 10.1002/j.1460-2075.1988.tb02835.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ho Y., Kim S. J., Waring R. B. A protein encoded by a group I intron in Aspergillus nidulans directly assists RNA splicing and is a DNA endonuclease. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):8994–8999. doi: 10.1073/pnas.94.17.8994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ho Y., Waring R. B. The maturase encoded by a group I intron from Aspergillus nidulans stabilizes RNA tertiary structure and promotes rapid splicing. J Mol Biol. 1999 Oct 8;292(5):987–1001. doi: 10.1006/jmbi.1999.3070. [DOI] [PubMed] [Google Scholar]
  27. Hu D., Crist M., Duan X., Gimble F. S. Mapping of a DNA binding region of the PI-sceI homing endonuclease by affinity cleavage and alanine-scanning mutagenesis. Biochemistry. 1999 Sep 28;38(39):12621–12628. doi: 10.1021/bi991192h. [DOI] [PubMed] [Google Scholar]
  28. Johnson C. H., McEwen J. E. Mitochondrial protein synthesis is not required for efficient excision of intron aI5 beta from COX1 pre-mRNA in Saccharomyces cerevisiae. Mol Gen Genet. 1997 Sep;256(1):88–91. doi: 10.1007/s004380050549. [DOI] [PubMed] [Google Scholar]
  29. Kittle J. D., Jr, Mohr G., Gianelos J. A., Wang H., Lambowitz A. M. The Neurospora mitochondrial tyrosyl-tRNA synthetase is sufficient for group I intron splicing in vitro and uses the carboxy-terminal tRNA-binding domain along with other regions. Genes Dev. 1991 Jun;5(6):1009–1021. doi: 10.1101/gad.5.6.1009. [DOI] [PubMed] [Google Scholar]
  30. Klopotowski T., Wiater A. Synergism of aminotriazole and phosphate on the inhibition of yeast imidazole glycerol phosphate dehydratase. Arch Biochem Biophys. 1965 Dec;112(3):562–566. doi: 10.1016/0003-9861(65)90096-2. [DOI] [PubMed] [Google Scholar]
  31. Kämper U., Kück U., Cherniack A. D., Lambowitz A. M. The mitochondrial tyrosyl-tRNA synthetase of Podospora anserina is a bifunctional enzyme active in protein synthesis and RNA splicing. Mol Cell Biol. 1992 Feb;12(2):499–511. doi: 10.1128/mcb.12.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Labouesse M., Netter P., Schroeder R. Molecular basis of the 'box effect', A maturase deficiency leading to the absence of splicing of two introns located in two split genes of yeast mitochondrial DNA. Eur J Biochem. 1984 Oct 1;144(1):85–93. doi: 10.1111/j.1432-1033.1984.tb08434.x. [DOI] [PubMed] [Google Scholar]
  33. Labouesse M. The yeast mitochondrial leucyl-tRNA synthetase is a splicing factor for the excision of several group I introns. Mol Gen Genet. 1990 Nov;224(2):209–221. doi: 10.1007/BF00271554. [DOI] [PubMed] [Google Scholar]
  34. Lambowitz A. M., Perlman P. S. Involvement of aminoacyl-tRNA synthetases and other proteins in group I and group II intron splicing. Trends Biochem Sci. 1990 Nov;15(11):440–444. doi: 10.1016/0968-0004(90)90283-h. [DOI] [PubMed] [Google Scholar]
  35. Lazowska J., Jacq C., Slonimski P. P. Sequence of introns and flanking exons in wild-type and box3 mutants of cytochrome b reveals an interlaced splicing protein coded by an intron. Cell. 1980 Nov;22(2 Pt 2):333–348. doi: 10.1016/0092-8674(80)90344-x. [DOI] [PubMed] [Google Scholar]
  36. Lewin A. S., Thomas J., Jr, Tirupati H. K. Cotranscriptional splicing of a group I intron is facilitated by the Cbp2 protein. Mol Cell Biol. 1995 Dec;15(12):6971–6978. doi: 10.1128/mcb.15.12.6971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Li G. Y., Bécam A. M., Slonimski P. P., Herbert C. J. In vitro mutagenesis of the mitochondrial leucyl tRNA synthetase of Saccharomyces cerevisiae shows that the suppressor activity of the mutant proteins is related to the splicing function of the wild-type protein. Mol Gen Genet. 1996 Oct 28;252(6):667–675. doi: 10.1007/BF02173972. [DOI] [PubMed] [Google Scholar]
  38. Martin F., Schaller A., Eglite S., Schümperli D., Müller B. The gene for histone RNA hairpin binding protein is located on human chromosome 4 and encodes a novel type of RNA binding protein. EMBO J. 1997 Feb 17;16(4):769–778. doi: 10.1093/emboj/16.4.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Martinis S. A., Plateau P., Cavarelli J., Florentz C. Aminoacyl-tRNA synthetases: a family of expanding functions. Mittelwihr, France, October 10-15, 1999. EMBO J. 1999 Sep 1;18(17):4591–4596. doi: 10.1093/emboj/18.17.4591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Martinis S. A., Plateau P., Cavarelli J., Florentz C. Aminoacyl-tRNA synthetases: a new image for a classical family. Biochimie. 1999 Jul;81(7):683–700. doi: 10.1016/s0300-9084(99)80126-6. [DOI] [PubMed] [Google Scholar]
  41. Michel F., Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol. 1990 Dec 5;216(3):585–610. doi: 10.1016/0022-2836(90)90386-Z. [DOI] [PubMed] [Google Scholar]
  42. Mohr G., Caprara M. G., Guo Q., Lambowitz A. M. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme. Nature. 1994 Jul 14;370(6485):147–150. doi: 10.1038/370147a0. [DOI] [PubMed] [Google Scholar]
  43. Mohr G., Zhang A., Gianelos J. A., Belfort M., Lambowitz A. M. The neurospora CYT-18 protein suppresses defects in the phage T4 td intron by stabilizing the catalytically active structure of the intron core. Cell. 1992 May 1;69(3):483–494. doi: 10.1016/0092-8674(92)90449-m. [DOI] [PubMed] [Google Scholar]
  44. Putz U., Skehel P., Kuhl D. A tri-hybrid system for the analysis and detection of RNA--protein interactions. Nucleic Acids Res. 1996 Dec 1;24(23):4838–4840. doi: 10.1093/nar/24.23.4838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rho S. B., Kim M. J., Lee J. S., Seol W., Motegi H., Kim S., Shiba K. Genetic dissection of protein-protein interactions in multi-tRNA synthetase complex. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4488–4493. doi: 10.1073/pnas.96.8.4488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Rho S. B., Lee J. S., Jeong E. J., Kim K. S., Kim Y. G., Kim S. A multifunctional repeated motif is present in human bifunctional tRNA synthetase. J Biol Chem. 1998 May 1;273(18):11267–11273. doi: 10.1074/jbc.273.18.11267. [DOI] [PubMed] [Google Scholar]
  47. Rho S. B., Lee K. H., Kim J. W., Shiba K., Jo Y. J., Kim S. Interaction between human tRNA synthetases involves repeated sequence elements. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10128–10133. doi: 10.1073/pnas.93.19.10128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Roses A. D., Saunders A. M. Evaluation of suspected dementia. N Engl J Med. 1996 Dec 26;335(26):1996–1998. doi: 10.1056/NEJM199612263352613. [DOI] [PubMed] [Google Scholar]
  49. Saldanha R. J., Patel S. S., Surendran R., Lee J. C., Lambowitz A. M. Involvement of Neurospora mitochondrial tyrosyl-tRNA synthetase in RNA splicing. A new method for purifying the protein and characterization of physical and enzymatic properties pertinent to splicing. Biochemistry. 1995 Jan 31;34(4):1275–1287. doi: 10.1021/bi00004a022. [DOI] [PubMed] [Google Scholar]
  50. Saldanha R., Ellington A., Lambowitz A. M. Analysis of the CYT-18 protein binding site at the junction of stacked helices in a group I intron RNA by quantitative binding assays and in vitro selection. J Mol Biol. 1996 Aug 9;261(1):23–42. doi: 10.1006/jmbi.1996.0439. [DOI] [PubMed] [Google Scholar]
  51. SenGupta D. J., Zhang B., Kraemer B., Pochart P., Fields S., Wickens M. A three-hybrid system to detect RNA-protein interactions in vivo. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8496–8501. doi: 10.1073/pnas.93.16.8496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Shaw L. C., Lewin A. S. Protein-induced folding of a group I intron in cytochrome b pre-mRNA. J Biol Chem. 1995 Sep 15;270(37):21552–21562. doi: 10.1074/jbc.270.37.21552. [DOI] [PubMed] [Google Scholar]
  53. Shaw L. C., Thomas J., Jr, Lewin A. S. The Cbp2 protein suppresses splice site mutations in a group I intron. Nucleic Acids Res. 1996 Sep 1;24(17):3415–3423. doi: 10.1093/nar/24.17.3415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Struhl K., Davis R. W. Production of a functional eukaryotic enzyme in Escherichia coli: cloning and expression of the yeast structural gene for imidazole-glycerolphosphate dehydratase (his3). Proc Natl Acad Sci U S A. 1977 Dec;74(12):5255–5259. doi: 10.1073/pnas.74.12.5255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Séraphin B., Simon M., Faye G. MSS18, a yeast nuclear gene involved in the splicing of intron aI5 beta of the mitochondrial cox1 transcript. EMBO J. 1988 May;7(5):1455–1464. doi: 10.1002/j.1460-2075.1988.tb02963.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Tirupati H. K., Shaw L. C., Lewin A. S. An RNA binding motif in the Cbp2 protein required for protein-stimulated RNA catalysis. J Biol Chem. 1999 Oct 22;274(43):30393–30401. doi: 10.1074/jbc.274.43.30393. [DOI] [PubMed] [Google Scholar]
  57. Uhlenbeck O. C., Carey J., Romaniuk P. J., Lowary P. T., Beckett D. Interaction of R17 coat protein with its RNA binding site for translational repression. J Biomol Struct Dyn. 1983 Oct;1(2):539–552. doi: 10.1080/07391102.1983.10507460. [DOI] [PubMed] [Google Scholar]
  58. Valencik M. L., McEwen J. E. Genetic evidence that different functional domains of the PET54 gene product facilitate expression of the mitochondrial genes COX1 and COX3 in Saccharomyces cerevisiae. Mol Cell Biol. 1991 May;11(5):2399–2405. doi: 10.1128/mcb.11.5.2399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Vidal M., Legrain P. Yeast forward and reverse 'n'-hybrid systems. Nucleic Acids Res. 1999 Feb 15;27(4):919–929. doi: 10.1093/nar/27.4.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Wallweber G. J., Mohr S., Rennard R., Caprara M. G., Lambowitz A. M. Characterization of Neurospora mitochondrial group I introns reveals different CYT-18 dependent and independent splicing strategies and an alternative 3' splice site for an intron ORF. RNA. 1997 Feb;3(2):114–131. [PMC free article] [PubMed] [Google Scholar]
  61. Wang Z. F., Whitfield M. L., Ingledue T. C., 3rd, Dominski Z., Marzluff W. F. The protein that binds the 3' end of histone mRNA: a novel RNA-binding protein required for histone pre-mRNA processing. Genes Dev. 1996 Dec 1;10(23):3028–3040. doi: 10.1101/gad.10.23.3028. [DOI] [PubMed] [Google Scholar]
  62. Weeks K. M., Cech T. R. Assembly of a ribonucleoprotein catalyst by tertiary structure capture. Science. 1996 Jan 19;271(5247):345–348. doi: 10.1126/science.271.5247.345. [DOI] [PubMed] [Google Scholar]
  63. Weeks K. M., Cech T. R. Efficient protein-facilitated splicing of the yeast mitochondrial bI5 intron. Biochemistry. 1995 Jun 13;34(23):7728–7738. doi: 10.1021/bi00023a020. [DOI] [PubMed] [Google Scholar]
  64. Weeks K. M., Cech T. R. Protein facilitation of group I intron splicing by assembly of the catalytic core and the 5' splice site domain. Cell. 1995 Jul 28;82(2):221–230. doi: 10.1016/0092-8674(95)90309-7. [DOI] [PubMed] [Google Scholar]
  65. Weeks K. M. Protein-facilitated RNA folding. Curr Opin Struct Biol. 1997 Jun;7(3):336–342. doi: 10.1016/s0959-440x(97)80048-6. [DOI] [PubMed] [Google Scholar]
  66. Wenzlau J. M., Saldanha R. J., Butow R. A., Perlman P. S. A latent intron-encoded maturase is also an endonuclease needed for intron mobility. Cell. 1989 Feb 10;56(3):421–430. doi: 10.1016/0092-8674(89)90245-6. [DOI] [PubMed] [Google Scholar]
  67. Witherell G. W., Wu H. N., Uhlenbeck O. C. Cooperative binding of R17 coat protein to RNA. Biochemistry. 1990 Dec 18;29(50):11051–11057. doi: 10.1021/bi00502a006. [DOI] [PubMed] [Google Scholar]
  68. Zarrinkar P. P., Williamson J. R. Kinetic intermediates in RNA folding. Science. 1994 Aug 12;265(5174):918–924. doi: 10.1126/science.8052848. [DOI] [PubMed] [Google Scholar]
  69. Zhang B., Gallegos M., Puoti A., Durkin E., Fields S., Kimble J., Wickens M. P. A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature. 1997 Dec 4;390(6659):477–484. doi: 10.1038/37297. [DOI] [PubMed] [Google Scholar]
  70. Zhang B., Kraemer B., SenGupta D., Fields S., Wickens M. Yeast three-hybrid system to detect and analyze RNA-protein interactions. Methods Enzymol. 2000;318:399–419. doi: 10.1016/s0076-6879(00)18066-8. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES