Skip to main content
RNA logoLink to RNA
. 2001 Jan;7(1):106–113. doi: 10.1017/s1355838201000577

Tethered-function analysis reveals that elF4E can recruit ribosomes independent of its binding to the cap structure.

E De Gregorio 1, J Baron 1, T Preiss 1, M W Hentze 1
PMCID: PMC1370060  PMID: 11214172

Abstract

The cap-binding complex elF4F is involved in ribosome recruitment during the initiation phase of translation and is composed of three subunits: elF4E, -4G, and -4A. The m7GpppN cap-binding subunit eIF4E binds the N-terminal region of eIF4G, which in turn contacts eIF4A through its central and C-terminal regions. We have previously shown, through a tethered-function approach in transfected HeLa cells, that the binding of eIF4G to an mRNA is sufficient to drive productive translation (De Gregorio et al., EMBO J, 1999, 18:4865-4874). Here we exploit this approach to assess which of the other subunits of elF4F can exert this function. eIF4AI or mutant forms of eIF4E were fused to the RNA-binding domain of the lambda phage antiterminator protein N to generate the chimeric proteins lambda4A, lambda4E-102 (abolished cap binding), and lambda4E-73-102 (impaired binding to both, the cap and eIF4G). The fusion proteins were directed to a bicistronic reporter mRNA by means of interaction with a specific lambda-N binding site (boxB) in the intercistronic space. We show that lambda4E-102, but neither the double mutant lambda4E-73-102 nor lambda4A, suffices to promote translation of the downstream gene in this assay. Coimmunoprecipitation analyses confirmed that all lambda-fusion proteins are capable of interacting with the appropriate endogenous eIF4F subunits. These results reveal that eIF4E, as well as eIF4G, can drive ribosome recruitment independent of a physical link to the cap structure. In spite of its interaction with endogenous eIF4G, lambda4A does not display this property. eIF4A thus appears to supply an essential auxiliary function to eIF4F that may require its ability to cycle into and out of this complex.

Full Text

The Full Text of this article is available as a PDF (351.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borman A. M., Kirchweger R., Ziegler E., Rhoads R. E., Skern T., Kean K. M. elF4G and its proteolytic cleavage products: effect on initiation of protein synthesis from capped, uncapped, and IRES-containing mRNAs. RNA. 1997 Feb;3(2):186–196. [PMC free article] [PubMed] [Google Scholar]
  2. Carberry S. E., Darzynkiewicz E., Goss D. J. A comparison of the binding of methylated cap analogues to wheat germ protein synthesis initiation factors 4F and (iso)4F. Biochemistry. 1991 Feb 12;30(6):1624–1627. doi: 10.1021/bi00220a026. [DOI] [PubMed] [Google Scholar]
  3. De Gregorio E., Preiss T., Hentze M. W. Translation driven by an eIF4G core domain in vivo. EMBO J. 1999 Sep 1;18(17):4865–4874. doi: 10.1093/emboj/18.17.4865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Gregorio E., Preiss T., Hentze M. W. Translation driven by an eIF4G core domain in vivo. EMBO J. 1999 Sep 1;18(17):4865–4874. doi: 10.1093/emboj/18.17.4865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dominguez D., Altmann M., Benz J., Baumann U., Trachsel H. Interaction of translation initiation factor eIF4G with eIF4A in the yeast Saccharomyces cerevisiae. J Biol Chem. 1999 Sep 17;274(38):26720–26726. doi: 10.1074/jbc.274.38.26720. [DOI] [PubMed] [Google Scholar]
  6. Fortes P., Inada T., Preiss T., Hentze M. W., Mattaj I. W., Sachs A. B. The yeast nuclear cap binding complex can interact with translation factor eIF4G and mediate translation initiation. Mol Cell. 2000 Jul;6(1):191–196. [PubMed] [Google Scholar]
  7. Gallie D. R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 1991 Nov;5(11):2108–2116. doi: 10.1101/gad.5.11.2108. [DOI] [PubMed] [Google Scholar]
  8. Gingras A. C., Raught B., Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem. 1999;68:913–963. doi: 10.1146/annurev.biochem.68.1.913. [DOI] [PubMed] [Google Scholar]
  9. Gray N. K., Coller J. M., Dickson K. S., Wickens M. Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J. 2000 Sep 1;19(17):4723–4733. doi: 10.1093/emboj/19.17.4723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haghighat A., Sonenberg N. eIF4G dramatically enhances the binding of eIF4E to the mRNA 5'-cap structure. J Biol Chem. 1997 Aug 29;272(35):21677–21680. doi: 10.1074/jbc.272.35.21677. [DOI] [PubMed] [Google Scholar]
  11. Hentze M. W. eIF4G: a multipurpose ribosome adapter? Science. 1997 Jan 24;275(5299):500–501. doi: 10.1126/science.275.5299.500. [DOI] [PubMed] [Google Scholar]
  12. Hershey J. W. Translational control in mammalian cells. Annu Rev Biochem. 1991;60:717–755. doi: 10.1146/annurev.bi.60.070191.003441. [DOI] [PubMed] [Google Scholar]
  13. Hershey P. E., McWhirter S. M., Gross J. D., Wagner G., Alber T., Sachs A. B. The Cap-binding protein eIF4E promotes folding of a functional domain of yeast translation initiation factor eIF4G1. J Biol Chem. 1999 Jul 23;274(30):21297–21304. doi: 10.1074/jbc.274.30.21297. [DOI] [PubMed] [Google Scholar]
  14. Hosfield D. J., Mol C. D., Shen B., Tainer J. A. Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity. Cell. 1998 Oct 2;95(1):135–146. doi: 10.1016/s0092-8674(00)81789-4. [DOI] [PubMed] [Google Scholar]
  15. Imataka H., Gradi A., Sonenberg N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 1998 Dec 15;17(24):7480–7489. doi: 10.1093/emboj/17.24.7480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Imataka H., Sonenberg N. Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol Cell Biol. 1997 Dec;17(12):6940–6947. doi: 10.1128/mcb.17.12.6940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lamphear B. J., Kirchweger R., Skern T., Rhoads R. E. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J Biol Chem. 1995 Sep 15;270(37):21975–21983. doi: 10.1074/jbc.270.37.21975. [DOI] [PubMed] [Google Scholar]
  18. Li Q., Imataka H., Morino S., Rogers G. W., Jr, Richter-Cook N. J., Merrick W. C., Sonenberg N. Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII. Mol Cell Biol. 1999 Nov;19(11):7336–7346. doi: 10.1128/mcb.19.11.7336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lomakin I. B., Hellen C. U., Pestova T. V. Physical association of eukaryotic initiation factor 4G (eIF4G) with eIF4A strongly enhances binding of eIF4G to the internal ribosomal entry site of encephalomyocarditis virus and is required for internal initiation of translation. Mol Cell Biol. 2000 Aug;20(16):6019–6029. doi: 10.1128/mcb.20.16.6019-6029.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mader S., Lee H., Pause A., Sonenberg N. The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol. 1995 Sep;15(9):4990–4997. doi: 10.1128/mcb.15.9.4990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Marcotrigiano J., Gingras A. C., Sonenberg N., Burley S. K. Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell. 1999 Jun;3(6):707–716. doi: 10.1016/s1097-2765(01)80003-4. [DOI] [PubMed] [Google Scholar]
  22. Marcotrigiano J., Gingras A. C., Sonenberg N., Burley S. K. Cocrystal structure of the messenger RNA 5' cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell. 1997 Jun 13;89(6):951–961. doi: 10.1016/s0092-8674(00)80280-9. [DOI] [PubMed] [Google Scholar]
  23. McCarthy J. E. Posttranscriptional control of gene expression in yeast. Microbiol Mol Biol Rev. 1998 Dec;62(4):1492–1553. doi: 10.1128/mmbr.62.4.1492-1553.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Morino S., Hazama H., Ozaki M., Teraoka Y., Shibata S., Doi M., Ueda H., Ishida T., Uesugi S. Analysis of the mRNA cap-binding ability of human eukaryotic initiation factor-4E by use of recombinant wild-type and mutant forms. Eur J Biochem. 1996 Aug 1;239(3):597–601. doi: 10.1111/j.1432-1033.1996.0597u.x. [DOI] [PubMed] [Google Scholar]
  25. Morino S., Imataka H., Svitkin Y. V., Pestova T. V., Sonenberg N. Eukaryotic translation initiation factor 4E (eIF4E) binding site and the middle one-third of eIF4GI constitute the core domain for cap-dependent translation, and the C-terminal one-third functions as a modulatory region. Mol Cell Biol. 2000 Jan;20(2):468–477. doi: 10.1128/mcb.20.2.468-477.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nielsen P. J., Trachsel H. The mouse protein synthesis initiation factor 4A gene family includes two related functional genes which are differentially expressed. EMBO J. 1988 Jul;7(7):2097–2105. doi: 10.1002/j.1460-2075.1988.tb03049.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pantopoulos K., Gray N. K., Hentze M. W. Differential regulation of two related RNA-binding proteins, iron regulatory protein (IRP) and IRPB. RNA. 1995 Apr;1(2):155–163. [PMC free article] [PubMed] [Google Scholar]
  28. Pause A., Méthot N., Svitkin Y., Merrick W. C., Sonenberg N. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J. 1994 Mar 1;13(5):1205–1215. doi: 10.1002/j.1460-2075.1994.tb06370.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pestova T. V., Shatsky I. N., Fletcher S. P., Jackson R. J., Hellen C. U. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev. 1998 Jan 1;12(1):67–83. doi: 10.1101/gad.12.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Preiss T., Hentze M. W. Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature. 1998 Apr 2;392(6675):516–520. doi: 10.1038/33192. [DOI] [PubMed] [Google Scholar]
  31. Preiss T., Hentze M. W. From factors to mechanisms: translation and translational control in eukaryotes. Curr Opin Genet Dev. 1999 Oct;9(5):515–521. doi: 10.1016/s0959-437x(99)00005-2. [DOI] [PubMed] [Google Scholar]
  32. Ptushkina M., von der Haar T., Karim M. M., Hughes J. M., McCarthy J. E. Repressor binding to a dorsal regulatory site traps human eIF4E in a high cap-affinity state. EMBO J. 1999 Jul 15;18(14):4068–4075. doi: 10.1093/emboj/18.14.4068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ptushkina M., von der Haar T., Vasilescu S., Frank R., Birkenhäger R., McCarthy J. E. Cooperative modulation by eIF4G of eIF4E-binding to the mRNA 5' cap in yeast involves a site partially shared by p20. EMBO J. 1998 Aug 17;17(16):4798–4808. doi: 10.1093/emboj/17.16.4798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pyronnet S., Imataka H., Gingras A. C., Fukunaga R., Hunter T., Sonenberg N. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J. 1999 Jan 4;18(1):270–279. doi: 10.1093/emboj/18.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rogers J. T., Leiter L. M., McPhee J., Cahill C. M., Zhan S. S., Potter H., Nilsson L. N. Translation of the alzheimer amyloid precursor protein mRNA is up-regulated by interleukin-1 through 5'-untranslated region sequences. J Biol Chem. 1999 Mar 5;274(10):6421–6431. doi: 10.1074/jbc.274.10.6421. [DOI] [PubMed] [Google Scholar]
  36. Rozen F., Edery I., Meerovitch K., Dever T. E., Merrick W. C., Sonenberg N. Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol Cell Biol. 1990 Mar;10(3):1134–1144. doi: 10.1128/mcb.10.3.1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sachs A. B., Sarnow P., Hentze M. W. Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell. 1997 Jun 13;89(6):831–838. doi: 10.1016/s0092-8674(00)80268-8. [DOI] [PubMed] [Google Scholar]
  38. Tan R., Frankel A. D. Structural variety of arginine-rich RNA-binding peptides. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5282–5286. doi: 10.1073/pnas.92.12.5282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tarun S. Z., Jr, Sachs A. B. A common function for mRNA 5' and 3' ends in translation initiation in yeast. Genes Dev. 1995 Dec 1;9(23):2997–3007. doi: 10.1101/gad.9.23.2997. [DOI] [PubMed] [Google Scholar]
  40. Tarun S. Z., Jr, Sachs A. B. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 1996 Dec 16;15(24):7168–7177. [PMC free article] [PubMed] [Google Scholar]
  41. Wells S. E., Hillner P. E., Vale R. D., Sachs A. B. Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell. 1998 Jul;2(1):135–140. doi: 10.1016/s1097-2765(00)80122-7. [DOI] [PubMed] [Google Scholar]
  42. Wilson J. E., Pestova T. V., Hellen C. U., Sarnow P. Initiation of protein synthesis from the A site of the ribosome. Cell. 2000 Aug 18;102(4):511–520. doi: 10.1016/s0092-8674(00)00055-6. [DOI] [PubMed] [Google Scholar]
  43. von Der Haar T., Ball P. D., McCarthy J. E. Stabilization of eukaryotic initiation factor 4E binding to the mRNA 5'-Cap by domains of eIF4G. J Biol Chem. 2000 Sep 29;275(39):30551–30555. doi: 10.1074/jbc.M004565200. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES