Skip to main content
RNA logoLink to RNA
. 2001 Feb;7(2):161–166. doi: 10.1017/s1355838201001716

An early transition state for folding of the P4-P6 RNA domain.

S K Silverman 1, T R Cech 1
PMCID: PMC1370074  PMID: 11233973

Abstract

Tertiary folding of the 160-nt P4-P6 domain of the Tetrahymena group I intron RNA involves burying of substantial surface area, providing a model for the folding of other large RNA domains involved in catalysis. Stopped-flow fluorescence was used to monitor the Mg2+-induced tertiary folding of pyrene-labeled P4-P6. At 35 degrees C with [Mg2+] approximately 10 mM, P4-P6 folds on the tens of milliseconds timescale with k(obs) = 15-31 s(-1). From these values, an activation free energy deltaG(double dagger) of approximately 8-16 kcal/mol is calculated, where the large range for deltaG(double dagger) arises from uncertainty in the pre-exponential factor relating k(obs) and delta G(double dagger). The folding rates of six mutant P4-P6 RNAs were measured and found to be similar to that of the wild-type RNA, in spite of significant thermodynamic destabilization or stabilization. The ratios of the kinetic and thermodynamic free energy changes phi = delta deltaG(double dagger)/delta deltaG(o') are approximately 0, implying a folding transition state in which most of the native-state tertiary contacts are not yet formed (an early folding transition state). The k(obs) depends on the Mg2+ concentration, and the initial slope of k(obs) versus [Mg2+] suggests that only approximately 1 Mg2+ ion is bound in the rate-limiting folding step. This is consistent with an early folding transition state, because folded P4-P6 binds many Mg2+ ions. The observation of a substantial deltaG(double dagger) despite an early folding transition state suggests that a simple two-state folding diagram for Mg2+-induced P4-P6 folding is incomplete. Our kinetic data are some of the first to provide quantitative values for an activation barrier and location of a transition state for tertiary folding of an RNA domain.

Full Text

The Full Text of this article is available as a PDF (286.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bryngelson J. D., Onuchic J. N., Socci N. D., Wolynes P. G. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins. 1995 Mar;21(3):167–195. doi: 10.1002/prot.340210302. [DOI] [PubMed] [Google Scholar]
  2. Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
  3. Cate J. H., Hanna R. L., Doudna J. A. A magnesium ion core at the heart of a ribozyme domain. Nat Struct Biol. 1997 Jul;4(7):553–558. doi: 10.1038/nsb0797-553. [DOI] [PubMed] [Google Scholar]
  4. Deras M. L., Brenowitz M., Ralston C. Y., Chance M. R., Woodson S. A. Folding mechanism of the Tetrahymena ribozyme P4-P6 domain. Biochemistry. 2000 Sep 12;39(36):10975–10985. doi: 10.1021/bi0010118. [DOI] [PubMed] [Google Scholar]
  5. Dill K. A., Chan H. S. From Levinthal to pathways to funnels. Nat Struct Biol. 1997 Jan;4(1):10–19. doi: 10.1038/nsb0197-10. [DOI] [PubMed] [Google Scholar]
  6. Dobson C. M., Karplus M. The fundamentals of protein folding: bringing together theory and experiment. Curr Opin Struct Biol. 1999 Feb;9(1):92–101. doi: 10.1016/s0959-440x(99)80012-8. [DOI] [PubMed] [Google Scholar]
  7. Fang X. W., Pan T., Sosnick T. R. Mg2+-dependent folding of a large ribozyme without kinetic traps. Nat Struct Biol. 1999 Dec;6(12):1091–1095. doi: 10.1038/70016. [DOI] [PubMed] [Google Scholar]
  8. Fang X., Pan T., Sosnick T. R. A thermodynamic framework and cooperativity in the tertiary folding of a Mg2+-dependent ribozyme. Biochemistry. 1999 Dec 21;38(51):16840–16846. doi: 10.1021/bi991700n. [DOI] [PubMed] [Google Scholar]
  9. Fersht A. R. Characterizing transition states in protein folding: an essential step in the puzzle. Curr Opin Struct Biol. 1995 Feb;5(1):79–84. doi: 10.1016/0959-440x(95)80012-p. [DOI] [PubMed] [Google Scholar]
  10. Fersht A. R., Matouschek A., Serrano L. The folding of an enzyme. I. Theory of protein engineering analysis of stability and pathway of protein folding. J Mol Biol. 1992 Apr 5;224(3):771–782. doi: 10.1016/0022-2836(92)90561-w. [DOI] [PubMed] [Google Scholar]
  11. Fresco J. R., Adams A., Ascione R., Henley D., Lindahl T. Tertiary structure in transfer ribonucleic acids. Cold Spring Harb Symp Quant Biol. 1966;31:527–537. doi: 10.1101/sqb.1966.031.01.068. [DOI] [PubMed] [Google Scholar]
  12. Jackson S. E., Fersht A. R. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry. 1991 Oct 29;30(43):10428–10435. doi: 10.1021/bi00107a010. [DOI] [PubMed] [Google Scholar]
  13. Jackson S. E., Fersht A. R. Folding of chymotrypsin inhibitor 2. 2. Influence of proline isomerization on the folding kinetics and thermodynamic characterization of the transition state of folding. Biochemistry. 1991 Oct 29;30(43):10436–10443. doi: 10.1021/bi00107a011. [DOI] [PubMed] [Google Scholar]
  14. Juneau K., Cech T. R. In vitro selection of RNAs with increased tertiary structure stability. RNA. 1999 Aug;5(8):1119–1129. doi: 10.1017/s135583829999074x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lazaridis T., Karplus M. "New view" of protein folding reconciled with the old through multiple unfolding simulations. Science. 1997 Dec 12;278(5345):1928–1931. doi: 10.1126/science.278.5345.1928. [DOI] [PubMed] [Google Scholar]
  16. Leopold P. E., Montal M., Onuchic J. N. Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8721–8725. doi: 10.1073/pnas.89.18.8721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maglott E. J., Deo S. S., Przykorska A., Glick G. D. Conformational transitions of an unmodified tRNA: implications for RNA folding. Biochemistry. 1998 Nov 17;37(46):16349–16359. doi: 10.1021/bi981722u. [DOI] [PubMed] [Google Scholar]
  18. Matouschek A., Fersht A. R. Application of physical organic chemistry to engineered mutants of proteins: Hammond postulate behavior in the transition state of protein folding. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7814–7818. doi: 10.1073/pnas.90.16.7814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Matouschek A., Otzen D. E., Itzhaki L. S., Jackson S. E., Fersht A. R. Movement of the position of the transition state in protein folding. Biochemistry. 1995 Oct 17;34(41):13656–13662. doi: 10.1021/bi00041a047. [DOI] [PubMed] [Google Scholar]
  20. Murphy F. L., Cech T. R. An independently folding domain of RNA tertiary structure within the Tetrahymena ribozyme. Biochemistry. 1993 May 25;32(20):5291–5300. doi: 10.1021/bi00071a003. [DOI] [PubMed] [Google Scholar]
  21. Nymeyer H., Socci N. D., Onuchic J. N. Landscape approaches for determining the ensemble of folding transition states: success and failure hinge on the degree of frustration. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):634–639. doi: 10.1073/pnas.97.2.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Onuchic J. N., Luthey-Schulten Z., Wolynes P. G. Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem. 1997;48:545–600. doi: 10.1146/annurev.physchem.48.1.545. [DOI] [PubMed] [Google Scholar]
  23. Onuchic J. N., Socci N. D., Luthey-Schulten Z., Wolynes P. G. Protein folding funnels: the nature of the transition state ensemble. Fold Des. 1996;1(6):441–450. doi: 10.1016/S1359-0278(96)00060-0. [DOI] [PubMed] [Google Scholar]
  24. Otzen D. E., Itzhaki L. S., elMasry N. F., Jackson S. E., Fersht A. R. Structure of the transition state for the folding/unfolding of the barley chymotrypsin inhibitor 2 and its implications for mechanisms of protein folding. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10422–10425. doi: 10.1073/pnas.91.22.10422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pan J., Deras M. L., Woodson S. A. Fast folding of a ribozyme by stabilizing core interactions: evidence for multiple folding pathways in RNA. J Mol Biol. 2000 Feb 11;296(1):133–144. doi: 10.1006/jmbi.1999.3439. [DOI] [PubMed] [Google Scholar]
  26. Pan T., Sosnick T. R. Intermediates and kinetic traps in the folding of a large ribozyme revealed by circular dichroism and UV absorbance spectroscopies and catalytic activity. Nat Struct Biol. 1997 Nov;4(11):931–938. doi: 10.1038/nsb1197-931. [DOI] [PubMed] [Google Scholar]
  27. Rook M. S., Treiber D. K., Williamson J. R. Fast folding mutants of the Tetrahymena group I ribozyme reveal a rugged folding energy landscape. J Mol Biol. 1998 Aug 28;281(4):609–620. doi: 10.1006/jmbi.1998.1960. [DOI] [PubMed] [Google Scholar]
  28. Sclavi B., Sullivan M., Chance M. R., Brenowitz M., Woodson S. A. RNA folding at millisecond intervals by synchrotron hydroxyl radical footprinting. Science. 1998 Mar 20;279(5358):1940–1943. doi: 10.1126/science.279.5358.1940. [DOI] [PubMed] [Google Scholar]
  29. Serrano L., Matouschek A., Fersht A. R. The folding of an enzyme. III. Structure of the transition state for unfolding of barnase analysed by a protein engineering procedure. J Mol Biol. 1992 Apr 5;224(3):805–818. doi: 10.1016/0022-2836(92)90563-y. [DOI] [PubMed] [Google Scholar]
  30. Silverman S. K., Cech T. R. Energetics and cooperativity of tertiary hydrogen bonds in RNA structure. Biochemistry. 1999 Jul 6;38(27):8691–8702. doi: 10.1021/bi9906118. [DOI] [PubMed] [Google Scholar]
  31. Silverman S. K., Cech T. R. RNA tertiary folding monitored by fluorescence of covalently attached pyrene. Biochemistry. 1999 Oct 26;38(43):14224–14237. doi: 10.1021/bi991333f. [DOI] [PubMed] [Google Scholar]
  32. Silverman S. K., Deras M. L., Woodson S. A., Scaringe S. A., Cech T. R. Multiple folding pathways for the P4-P6 RNA domain. Biochemistry. 2000 Oct 10;39(40):12465–12475. doi: 10.1021/bi000828y. [DOI] [PubMed] [Google Scholar]
  33. Silverman S. K., Zheng M., Wu M., Tinoco I., Jr, Cech T. R. Quantifying the energetic interplay of RNA tertiary and secondary structure interactions. RNA. 1999 Dec;5(12):1665–1674. doi: 10.1017/s1355838299991823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Socci N. D., Onuchic J. N., Wolynes P. G. Protein folding mechanisms and the multidimensional folding funnel. Proteins. 1998 Aug 1;32(2):136–158. [PubMed] [Google Scholar]
  35. Szewczak A. A., Cech T. R. An RNA internal loop acts as a hinge to facilitate ribozyme folding and catalysis. RNA. 1997 Aug;3(8):838–849. [PMC free article] [PubMed] [Google Scholar]
  36. Treiber D. K., Rook M. S., Zarrinkar P. P., Williamson J. R. Kinetic intermediates trapped by native interactions in RNA folding. Science. 1998 Mar 20;279(5358):1943–1946. doi: 10.1126/science.279.5358.1943. [DOI] [PubMed] [Google Scholar]
  37. Treiber D. K., Williamson J. R. Exposing the kinetic traps in RNA folding. Curr Opin Struct Biol. 1999 Jun;9(3):339–345. doi: 10.1016/S0959-440X(99)80045-1. [DOI] [PubMed] [Google Scholar]
  38. Wu M., Tinoco I., Jr RNA folding causes secondary structure rearrangement. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11555–11560. doi: 10.1073/pnas.95.20.11555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zarrinkar P. P., Wang J., Williamson J. R. Slow folding kinetics of RNase P RNA. RNA. 1996 Jun;2(6):564–573. [PMC free article] [PubMed] [Google Scholar]
  40. Zarrinkar P. P., Williamson J. R. Kinetic intermediates in RNA folding. Science. 1994 Aug 12;265(5174):918–924. doi: 10.1126/science.8052848. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES