Skip to main content
RNA logoLink to RNA
. 2001 Feb;7(2):242–253. doi: 10.1017/s1355838201002163

Identification of the gene encoding the 5S ribosomal RNA maturase in Bacillus subtilis: mature 5S rRNA is dispensable for ribosome function.

C Condon 1, D Brechemier-Baey 1, B Beltchev 1, M Grunberg-Manago 1, H Putzer 1
PMCID: PMC1370082  PMID: 11233981

Abstract

Over 25 years ago, Pace and coworkers described an activity called RNase M5 in Bacillus subtilis cell extracts responsible for 5S ribosomal RNA maturation (Sogin & Pace, Nature, 1974, 252:598-600). Here we show that RNase M5 is encoded by a gene of previously unknown function that is highly conserved among the low G + C gram-positive bacteria. We propose that the gene be named rnmV. The rnmV gene is nonessential. B. subtilis strains lacking RNase M5 do not make mature 5S rRNA, indicating that this process is not necessary for ribosome function. 5S rRNA precursors can, however, be found in both free and translating ribosomes. In contrast to RNase E, which cleaves the Escherichia coli 5S precursor in a single-stranded region, which is then trimmed to yield mature 5S RNA, RNase M5 cleaves the B. subtilis equivalent in a double-stranded region to yield mature 5S rRNA in one step. For the most part, eubacteria contain one or the other system for 5S rRNA production, with an imperfect division along gram-negative and gram-positive lines. A potential correlation between the presence of RNase E or RNase M5 and the single- or double-stranded nature of the predicted cleavage sites is explored.

Full Text

The Full Text of this article is available as a PDF (938.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apirion D., Lassar A. B. A conditional lethal mutant of Escherichia coli which affects the processing of ribosomal RNA. J Biol Chem. 1978 Mar 10;253(5):1738–1742. [PubMed] [Google Scholar]
  2. Ceccarelli A., Dotto G. P., Altruda F., Perlo C., Silengo L., Turco E., Mangiarotti G. Immature 50 S subunits in Escherichia coli polyribosomes. FEBS Lett. 1978 Sep 15;93(2):348–350. doi: 10.1016/0014-5793(78)81137-5. [DOI] [PubMed] [Google Scholar]
  3. Condon C., Putzer H., Luo D., Grunberg-Manago M. Processing of the Bacillus subtilis thrS leader mRNA is RNase E-dependent in Escherichia coli. J Mol Biol. 1997 May 2;268(2):235–242. doi: 10.1006/jmbi.1997.0971. [DOI] [PubMed] [Google Scholar]
  4. Cormack R. S., Mackie G. A. Structural requirements for the processing of Escherichia coli 5 S ribosomal RNA by RNase E in vitro. J Mol Biol. 1992 Dec 20;228(4):1078–1090. doi: 10.1016/0022-2836(92)90316-c. [DOI] [PubMed] [Google Scholar]
  5. Douthwaite S., Garrett R. A., Wagner R., Feunteun J. A ribonuclease-resistant region of 5S RNA and its relation to the RNA binding sites of proteins L18 and L25. Nucleic Acids Res. 1979 Jun 11;6(7):2453–2470. doi: 10.1093/nar/6.7.2453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Egebjerg J., Christiansen J., Brown R. S., Larsen N., Garrett R. A. Protein L18 binds primarily at the junctions of helix II and internal loops A and B in Escherichia coli 5 S RNA. Implications for 5 S RNA structure. J Mol Biol. 1989 Apr 20;206(4):651–668. doi: 10.1016/0022-2836(89)90573-1. [DOI] [PubMed] [Google Scholar]
  7. Feunteun J., Jordan B. R., Monier R. Study of the maturation of 5 s RNA precursors in Escherichia coli. J Mol Biol. 1972 Oct 14;70(3):465–474. doi: 10.1016/0022-2836(72)90553-0. [DOI] [PubMed] [Google Scholar]
  8. Fox G. E., Woese C. R. 5S RNA secondary structure. Nature. 1975 Aug 7;256(5517):505–507. doi: 10.1038/256505a0. [DOI] [PubMed] [Google Scholar]
  9. Ghora B. K., Apirion D. Structural analysis and in vitro processing to p5 rRNA of a 9S RNA molecule isolated from an rne mutant of E. coli. Cell. 1978 Nov;15(3):1055–1066. doi: 10.1016/0092-8674(78)90289-1. [DOI] [PubMed] [Google Scholar]
  10. Ghosh S., Deutscher M. P. Oligoribonuclease is an essential component of the mRNA decay pathway. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4372–4377. doi: 10.1073/pnas.96.8.4372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gould H., Herbert B. N., Loviny T. Polysomes from Bacillus subtilis and Bacillus thuringiensis. Nature. 1969 Aug 23;223(5208):855–857. doi: 10.1038/223855a0. [DOI] [PubMed] [Google Scholar]
  12. Gray P. N., Garrett R. A., Stoffler G., Monier R. An attempt at the identification of the proteins involved in the incorporation of 5-S RNA during 50-S ribosomal subunit assembly. Eur J Biochem. 1972 Jul 24;28(3):412–421. doi: 10.1111/j.1432-1033.1972.tb01927.x. [DOI] [PubMed] [Google Scholar]
  13. Grunberg-Manago M. Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet. 1999;33:193–227. doi: 10.1146/annurev.genet.33.1.193. [DOI] [PubMed] [Google Scholar]
  14. Hagège J. M., Cohen S. N. A developmentally regulated Streptomyces endoribonuclease resembles ribonuclease E of Escherichia coli. Mol Microbiol. 1997 Sep;25(6):1077–1090. doi: 10.1046/j.1365-2958.1997.5311904.x. [DOI] [PubMed] [Google Scholar]
  15. Helser T. L., Davies J. E., Dahlberg J. E. Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli. Nat New Biol. 1971 Sep 1;233(35):12–14. doi: 10.1038/newbio233012a0. [DOI] [PubMed] [Google Scholar]
  16. Jaxel C., Duguet M., Nadal M. Analysis of DNA cleavage by reverse gyrase from Sulfolobus shibatae B12. Eur J Biochem. 1999 Feb;260(1):103–111. doi: 10.1046/j.1432-1327.1999.00128.x. [DOI] [PubMed] [Google Scholar]
  17. Khaitovich P., Mankin A. S. Effect of antibiotics on large ribosomal subunit assembly reveals possible function of 5 S rRNA. J Mol Biol. 1999 Sep 3;291(5):1025–1034. doi: 10.1006/jmbi.1999.3030. [DOI] [PubMed] [Google Scholar]
  18. Lazinski D., Grzadzielska E., Das A. Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif. Cell. 1989 Oct 6;59(1):207–218. doi: 10.1016/0092-8674(89)90882-9. [DOI] [PubMed] [Google Scholar]
  19. Li Z., Deutscher M. P. The role of individual exoribonucleases in processing at the 3' end of Escherichia coli tRNA precursors. J Biol Chem. 1994 Feb 25;269(8):6064–6071. [PubMed] [Google Scholar]
  20. Li Z., Deutscher M. P. The tRNA processing enzyme RNase T is essential for maturation of 5S RNA. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6883–6886. doi: 10.1073/pnas.92.15.6883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li Z., Pandit S., Deutscher M. P. RNase G (CafA protein) and RNase E are both required for the 5' maturation of 16S ribosomal RNA. EMBO J. 1999 May 17;18(10):2878–2885. doi: 10.1093/emboj/18.10.2878. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mangiarotti G., Turco E., Ponzetto A., Altruda F. Precursor 16S RNA in active 30S ribosomes. Nature. 1974 Jan 18;247(5437):147–148. doi: 10.1038/247147a0. [DOI] [PubMed] [Google Scholar]
  23. Mayford M., Weisblum B. Conformational alterations in the ermC transcript in vivo during induction. EMBO J. 1989 Dec 20;8(13):4307–4314. doi: 10.1002/j.1460-2075.1989.tb08617.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meyhack B., Pace B., Uhlenbeck O. C., Pace N. R. Use of T4 RNA ligase to construct model substrates for a ribosomal RNA maturation endonuclease. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3045–3049. doi: 10.1073/pnas.75.7.3045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Meyhack B., Pace N. R. Involvement of the mature domain in the in vitro maturation of Bacillus subtilis precursor 5S ribosomal RNA. Biochemistry. 1978 Dec 26;17(26):5804–5810. doi: 10.1021/bi00619a030. [DOI] [PubMed] [Google Scholar]
  26. Ono M., Kuwano M. A conditional lethal mutation in an Escherichia coli strain with a longer chemical lifetime of messenger RNA. J Mol Biol. 1979 Apr 15;129(3):343–357. doi: 10.1016/0022-2836(79)90500-x. [DOI] [PubMed] [Google Scholar]
  27. Pace B., Stahl D. A., Pace N. R. The catalytic element of a ribosomal RNA-processing complex. J Biol Chem. 1984 Sep 25;259(18):11454–11458. [PubMed] [Google Scholar]
  28. Pace N. R., Pace B. Ribosomal RNA terminal maturase: ribonuclease M5 from Bacillus subtilis. Methods Enzymol. 1990;181:366–374. doi: 10.1016/0076-6879(90)81136-i. [DOI] [PubMed] [Google Scholar]
  29. Sogin M. L., Pace N. R. In vitro maturation of precursors of 5S ribosomal RNA from Bacillus subtilis. Nature. 1974 Dec 13;252(5484):598–600. doi: 10.1038/252598a0. [DOI] [PubMed] [Google Scholar]
  30. Sogin M. L., Pace N. R. In vitro maturation of precursors of 5S ribosomal RNA from Bacillus subtilis. Nature. 1974 Dec 13;252(5484):598–600. doi: 10.1038/252598a0. [DOI] [PubMed] [Google Scholar]
  31. Sogin M. L., Pace N. R. Nucleotide sequence of 5 S ribosomal RNA precursor from Bacillus subtilis. J Biol Chem. 1976 Jun 10;251(11):3480–3488. [PubMed] [Google Scholar]
  32. Srivastava A. K., Schlessinger D. Coregulation of processing and translation: mature 5' termini of Escherichia coli 23S ribosomal RNA form in polysomes. Proc Natl Acad Sci U S A. 1988 Oct;85(19):7144–7148. doi: 10.1073/pnas.85.19.7144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stahl D. A., Meyhack B., Pace N. R. Recognition of local nucleotide conformation in contrast to sequence by a rRNA processing endonuclease. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5644–5648. doi: 10.1073/pnas.77.10.5644. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stahl D. A., Pace B., Marsh T., Pace N. R. The ribonucleoprotein substrate for a ribosomal RNA-processing nuclease. J Biol Chem. 1984 Sep 25;259(18):11448–11453. [PubMed] [Google Scholar]
  35. Stiekema W. J., Raué H. A., Planta R. J. Sequence analysis and in vitro maturation of five precursor 5S RNAs from Bacillus Q. Nucleic Acids Res. 1980 May 24;8(10):2193–2211. doi: 10.1093/nar/8.10.2193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stiekema W. J., de Leede-Twente R., Raué H. A., Planta R. J. Nucleotide sequence analysis of precursor 5S RNA from Bacillus licheniformis. Nucleic Acids Res. 1980 Oct 10;8(19):4535–4541. doi: 10.1093/nar/8.19.4535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Szewczyk B., Summers D. F. Preparative elution of proteins blotted to Immobilon membranes. Anal Biochem. 1988 Jan;168(1):48–53. doi: 10.1016/0003-2697(88)90008-5. [DOI] [PubMed] [Google Scholar]
  38. Tock M. R., Walsh A. P., Carroll G., McDowall K. J. The CafA protein required for the 5'-maturation of 16 S rRNA is a 5'-end-dependent ribonuclease that has context-dependent broad sequence specificity. J Biol Chem. 2000 Mar 24;275(12):8726–8732. doi: 10.1074/jbc.275.12.8726. [DOI] [PubMed] [Google Scholar]
  39. Vagner V., Dervyn E., Ehrlich S. D. A vector for systematic gene inactivation in Bacillus subtilis. Microbiology. 1998 Nov;144(Pt 11):3097–3104. doi: 10.1099/00221287-144-11-3097. [DOI] [PubMed] [Google Scholar]
  40. Varshney U., Lee C. P., RajBhandary U. L. Direct analysis of aminoacylation levels of tRNAs in vivo. Application to studying recognition of Escherichia coli initiator tRNA mutants by glutaminyl-tRNA synthetase. J Biol Chem. 1991 Dec 25;266(36):24712–24718. [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES