Skip to main content
RNA logoLink to RNA
. 2001 Feb;7(2):293–301. doi: 10.1017/s1355838201002205

Important role of the tetraloop region of 4.5S RNA in SRP binding to its receptor FtsY.

J R Jagath 1, N B Matassova 1, E de Leeuw 1, J M Warnecke 1, G Lentzen 1, M V Rodnina 1, J Luirink 1, W Wintermeyer 1
PMCID: PMC1370087  PMID: 11233986

Abstract

Binding of Escherichia coli signal recognition particle (SRP) to its receptor, FtsY, requires the presence of 4.5S RNA, although FtsY alone does not interact with 4.5S RNA. In this study, we report that the exchange of the GGAA tetraloop sequence in domain IV of 4.5S RNA for UUCG abolishes SRP-FtsY interaction, as determined by gel retardation and membrane targeting experiments, whereas replacements with other GNRA-type tetraloops have no effect. A number of other base exchanges in the tetraloop sequence have minor or intermediate inhibitory effects. Base pair disruptions in the stem adjacent to the tetraloop or replacement of the closing C-G base pair with G-C partially restored function of the otherwise inactive UUCG mutant. Chemical probing by hydroxyl radical cleavage of 4.5S RNA variants show that replacing GGAA with UUCG in the tetraloop sequence leads to structural changes both within the tetraloop and in the adjacent stem; the latter change is reversed upon reverting the C-G closing base pair to G-C. These results show that the SRP-FtsY interaction is strongly influenced by the structure of the tetraloop region of SRP RNA, in particular the tetraloop stem, and suggest that both SRP RNA and Ffh undergo mutual structural adaptation to form SRP that is functional in the interaction with the receptor, FtsY.

Full Text

The Full Text of this article is available as a PDF (376.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Althoff S., Selinger D., Wise J. A. Molecular evolution of SRP cycle components: functional implications. Nucleic Acids Res. 1994 Jun 11;22(11):1933–1947. doi: 10.1093/nar/22.11.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Antao V. P., Lai S. Y., Tinoco I., Jr A thermodynamic study of unusually stable RNA and DNA hairpins. Nucleic Acids Res. 1991 Nov 11;19(21):5901–5905. doi: 10.1093/nar/19.21.5901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Antao V. P., Tinoco I., Jr Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. Nucleic Acids Res. 1992 Feb 25;20(4):819–824. doi: 10.1093/nar/20.4.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Batey R. T., Rambo R. P., Lucast L., Rha B., Doudna J. A. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science. 2000 Feb 18;287(5456):1232–1239. doi: 10.1126/science.287.5456.1232. [DOI] [PubMed] [Google Scholar]
  5. Beck K., Wu L. F., Brunner J., Müller M. Discrimination between SRP- and SecA/SecB-dependent substrates involves selective recognition of nascent chains by SRP and trigger factor. EMBO J. 2000 Jan 4;19(1):134–143. doi: 10.1093/emboj/19.1.134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bernstein H. D., Poritz M. A., Strub K., Hoben P. J., Brenner S., Walter P. Model for signal sequence recognition from amino-acid sequence of 54K subunit of signal recognition particle. Nature. 1989 Aug 10;340(6233):482–486. doi: 10.1038/340482a0. [DOI] [PubMed] [Google Scholar]
  7. Cheong C., Varani G., Tinoco I., Jr Solution structure of an unusually stable RNA hairpin, 5'GGAC(UUCG)GUCC. Nature. 1990 Aug 16;346(6285):680–682. doi: 10.1038/346680a0. [DOI] [PubMed] [Google Scholar]
  8. Clemons W. M., Jr, Gowda K., Black S. D., Zwieb C., Ramakrishnan V. Crystal structure of the conserved subdomain of human protein SRP54M at 2.1 A resolution: evidence for the mechanism of signal peptide binding. J Mol Biol. 1999 Sep 24;292(3):697–705. doi: 10.1006/jmbi.1999.3090. [DOI] [PubMed] [Google Scholar]
  9. Freymann D. M., Keenan R. J., Stroud R. M., Walter P. Functional changes in the structure of the SRP GTPase on binding GDP and Mg2+GDP. Nat Struct Biol. 1999 Aug;6(8):793–801. doi: 10.1038/11572. [DOI] [PubMed] [Google Scholar]
  10. Freymann D. M., Keenan R. J., Stroud R. M., Walter P. Structure of the conserved GTPase domain of the signal recognition particle. Nature. 1997 Jan 23;385(6614):361–364. doi: 10.1038/385361a0. [DOI] [PubMed] [Google Scholar]
  11. Hauser S., Bacher G., Dobberstein B., Lütcke H. A complex of the signal sequence binding protein and the SRP RNA promotes translocation of nascent proteins. EMBO J. 1995 Nov 15;14(22):5485–5493. doi: 10.1002/j.1460-2075.1995.tb00235.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heus H. A., Pardi A. Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. Science. 1991 Jul 12;253(5016):191–194. doi: 10.1126/science.1712983. [DOI] [PubMed] [Google Scholar]
  13. Jagath J. R., Rodnina M. V., Lentzen G., Wintermeyer W. Interaction of guanine nucleotides with the signal recognition particle from Escherichia coli. Biochemistry. 1998 Nov 3;37(44):15408–15413. doi: 10.1021/bi981523a. [DOI] [PubMed] [Google Scholar]
  14. Jagath J. R., Rodnina M. V., Wintermeyer W. Conformational changes in the bacterial SRP receptor FtsY upon binding of guanine nucleotides and SRP. J Mol Biol. 2000 Jan 28;295(4):745–753. doi: 10.1006/jmbi.1999.3427. [DOI] [PubMed] [Google Scholar]
  15. Keenan R. J., Freymann D. M., Walter P., Stroud R. M. Crystal structure of the signal sequence binding subunit of the signal recognition particle. Cell. 1998 Jul 24;94(2):181–191. doi: 10.1016/s0092-8674(00)81418-x. [DOI] [PubMed] [Google Scholar]
  16. Kusters R., Lentzen G., Eppens E., van Geel A., van der Weijden C. C., Wintermeyer W., Luirink J. The functioning of the SRP receptor FtsY in protein-targeting in E. coli is correlated with its ability to bind and hydrolyse GTP. FEBS Lett. 1995 Sep 25;372(2-3):253–258. doi: 10.1016/0014-5793(95)00997-n. [DOI] [PubMed] [Google Scholar]
  17. Larsen N., Zwieb C. SRP-RNA sequence alignment and secondary structure. Nucleic Acids Res. 1991 Jan 25;19(2):209–215. doi: 10.1093/nar/19.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lentzen G., Moine H., Ehresmann C., Ehresmann B., Wintermeyer W. Structure of 4.5S RNA in the signal recognition particle of Escherichia coli as studied by enzymatic and chemical probing. RNA. 1996 Mar;2(3):244–253. [PMC free article] [PubMed] [Google Scholar]
  19. Macao B., Luirink J., Samuelsson T. Ffh and FtsY in a Mycoplasma mycoides signal-recognition particle pathway: SRP RNA and M domain of Ffh are not required for stimulation of GTPase activity in vitro. Mol Microbiol. 1997 May;24(3):523–534. doi: 10.1046/j.1365-2958.1997.3551729.x. [DOI] [PubMed] [Google Scholar]
  20. Montoya G., Svensson C., Luirink J., Sinning I. Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature. 1997 Jan 23;385(6614):365–368. doi: 10.1038/385365a0. [DOI] [PubMed] [Google Scholar]
  21. Peluso P., Herschlag D., Nock S., Freymann D. M., Johnson A. E., Walter P. Role of 4.5S RNA in assembly of the bacterial signal recognition particle with its receptor. Science. 2000 Jun 2;288(5471):1640–1643. doi: 10.1126/science.288.5471.1640. [DOI] [PubMed] [Google Scholar]
  22. Powers T., Walter P. Reciprocal stimulation of GTP hydrolysis by two directly interacting GTPases. Science. 1995 Sep 8;269(5229):1422–1424. doi: 10.1126/science.7660124. [DOI] [PubMed] [Google Scholar]
  23. Rapoport T. A., Jungnickel B., Kutay U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu Rev Biochem. 1996;65:271–303. doi: 10.1146/annurev.bi.65.070196.001415. [DOI] [PubMed] [Google Scholar]
  24. Römisch K., Webb J., Herz J., Prehn S., Frank R., Vingron M., Dobberstein B. Homology of 54K protein of signal-recognition particle, docking protein and two E. coli proteins with putative GTP-binding domains. Nature. 1989 Aug 10;340(6233):478–482. doi: 10.1038/340478a0. [DOI] [PubMed] [Google Scholar]
  25. Schmitz U., Behrens S., Freymann D. M., Keenan R. J., Lukavsky P., Walter P., James T. L. Structure of the phylogenetically most conserved domain of SRP RNA. RNA. 1999 Nov;5(11):1419–1429. doi: 10.1017/s1355838299991458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schmitz U., James T. L., Lukavsky P., Walter P. Structure of the most conserved internal loop in SRP RNA. Nat Struct Biol. 1999 Jul;6(7):634–638. doi: 10.1038/10683. [DOI] [PubMed] [Google Scholar]
  27. Selinger D., Liao X., Wise J. A. Functional interchangeability of the structurally similar tetranucleotide loops GAAA and UUCG in fission yeast signal recognition particle RNA. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5409–5413. doi: 10.1073/pnas.90.12.5409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Struck J. C., Lempicki R. A., Toschka H. Y., Erdmann V. A., Fournier M. J. Escherichia coli 4.5S RNA gene function can be complemented by heterologous bacterial RNA genes. J Bacteriol. 1990 Mar;172(3):1284–1288. doi: 10.1128/jb.172.3.1284-1288.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  30. Ulbrandt N. D., Newitt J. A., Bernstein H. D. The E. coli signal recognition particle is required for the insertion of a subset of inner membrane proteins. Cell. 1997 Jan 24;88(2):187–196. doi: 10.1016/s0092-8674(00)81839-5. [DOI] [PubMed] [Google Scholar]
  31. Valent Q. A., Scotti P. A., High S., de Gier J. W., von Heijne G., Lentzen G., Wintermeyer W., Oudega B., Luirink J. The Escherichia coli SRP and SecB targeting pathways converge at the translocon. EMBO J. 1998 May 1;17(9):2504–2512. doi: 10.1093/emboj/17.9.2504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Valent Q. A., de Gier J. W., von Heijne G., Kendall D. A., ten Hagen-Jongman C. M., Oudega B., Luirink J. Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and trigger factor. Mol Microbiol. 1997 Jul;25(1):53–64. doi: 10.1046/j.1365-2958.1997.4431808.x. [DOI] [PubMed] [Google Scholar]
  33. Walter P., Blobel G. Disassembly and reconstitution of signal recognition particle. Cell. 1983 Sep;34(2):525–533. doi: 10.1016/0092-8674(83)90385-9. [DOI] [PubMed] [Google Scholar]
  34. Walter P., Johnson A. E. Signal sequence recognition and protein targeting to the endoplasmic reticulum membrane. Annu Rev Cell Biol. 1994;10:87–119. doi: 10.1146/annurev.cb.10.110194.000511. [DOI] [PubMed] [Google Scholar]
  35. Williams D. J., Hall K. B. Experimental and computational studies of the G[UUCG]C RNA tetraloop. J Mol Biol. 2000 Apr 14;297(5):1045–1061. doi: 10.1006/jmbi.2000.3623. [DOI] [PubMed] [Google Scholar]
  36. Wood H., Luirink J., Tollervey D. Evolutionary conserved nucleotides within the E.coli 4.5S RNA are required for association with P48 in vitro and for optimal function in vivo. Nucleic Acids Res. 1992 Nov 25;20(22):5919–5925. doi: 10.1093/nar/20.22.5919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zheng N., Gierasch L. M. Domain interactions in E. coli SRP: stabilization of M domain by RNA is required for effective signal sequence modulation of NG domain. Mol Cell. 1997 Dec;1(1):79–87. doi: 10.1016/s1097-2765(00)80009-x. [DOI] [PubMed] [Google Scholar]
  38. Zwieb C. Site-directed mutagenesis of signal-recognition particle RNA. Identification of the nucleotides in helix 8 required for interaction with protein SRP19. Eur J Biochem. 1994 Jun 15;222(3):885–890. doi: 10.1111/j.1432-1033.1994.tb18936.x. [DOI] [PubMed] [Google Scholar]
  39. de Gier J. W., Scotti P. A., Säf A., Valent Q. A., Kuhn A., Luirink J., von Heijne G. Differential use of the signal recognition particle translocase targeting pathway for inner membrane protein assembly in Escherichia coli. Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14646–14651. doi: 10.1073/pnas.95.25.14646. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES