Skip to main content
RNA logoLink to RNA
. 2001 Mar;7(3):361–373. doi: 10.1017/s1355838201002230

Basis for regulated RNA cleavage by functional analysis of RNase L and Ire1p.

B Dong 1, M Niwa 1, P Walter 1, R H Silverman 1
PMCID: PMC1370093  PMID: 11333017

Abstract

RNase L and Ire1p are members of a superfamily of regulated endoribonucleases that play essential roles in mediating diverse types of cellular stress responses. 2'-5' oligoadenylates, produced in response to interferon treatment and viral double-stranded RNA, are necessary to activate RNase L. In contrast, unfolded proteins in the endoplasmic reticulum activate Ire1p, a transmembrane serine/threonine kinase and endoribonuclease. To probe their similarities and differences, molecular properties of wild-type and mutant forms of human RNase L and yeast Ire1p were compared. Surprisingly, RNase L and Ire1p showed mutually exclusive RNA substrate specificity and partially overlapping but not identical requirements for phylogenetically conserved amino acid residues in their nuclease domains. A functional model for RNase L was generated based on the comparative analysis with Ire1p that assigns novel roles for ankyrin repeats and kinase-like domains.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M. D., Celniker S. E., Holt R. A., Evans C. A., Gocayne J. D., Amanatides P. G., Scherer S. E., Li P. W., Hoskins R. A., Galle R. F. The genome sequence of Drosophila melanogaster. Science. 2000 Mar 24;287(5461):2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  2. Bork P., Sander C. A hybrid protein kinase-RNase in an interferon-induced pathway? FEBS Lett. 1993 Nov 15;334(2):149–152. doi: 10.1016/0014-5793(93)81701-z. [DOI] [PubMed] [Google Scholar]
  3. Carroll S. S., Chen E., Viscount T., Geib J., Sardana M. K., Gehman J., Kuo L. C. Cleavage of oligoribonucleotides by the 2',5'-oligoadenylate- dependent ribonuclease L. J Biol Chem. 1996 Mar 1;271(9):4988–4992. doi: 10.1074/jbc.271.9.4988. [DOI] [PubMed] [Google Scholar]
  4. Cole J. L., Carroll S. S., Kuo L. C. Stoichiometry of 2',5'-oligoadenylate-induced dimerization of ribonuclease L. A sedimentation equilibrium study. J Biol Chem. 1996 Feb 23;271(8):3979–3981. doi: 10.1074/jbc.271.8.3979. [DOI] [PubMed] [Google Scholar]
  5. Cox J. S., Shamu C. E., Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell. 1993 Jun 18;73(6):1197–1206. doi: 10.1016/0092-8674(93)90648-a. [DOI] [PubMed] [Google Scholar]
  6. Cox J. S., Walter P. A novel mechanism for regulating activity of a transcription factor that controls the unfolded protein response. Cell. 1996 Nov 1;87(3):391–404. doi: 10.1016/s0092-8674(00)81360-4. [DOI] [PubMed] [Google Scholar]
  7. Dong B., Silverman R. H. 2-5A-dependent RNase molecules dimerize during activation by 2-5A. J Biol Chem. 1995 Feb 24;270(8):4133–4137. doi: 10.1074/jbc.270.8.4133. [DOI] [PubMed] [Google Scholar]
  8. Dong B., Silverman R. H. A bipartite model of 2-5A-dependent RNase L. J Biol Chem. 1997 Aug 29;272(35):22236–22242. doi: 10.1074/jbc.272.35.22236. [DOI] [PubMed] [Google Scholar]
  9. Dong B., Silverman R. H. Alternative function of a protein kinase homology domain in 2', 5'-oligoadenylate dependent RNase L. Nucleic Acids Res. 1999 Jan 15;27(2):439–445. doi: 10.1093/nar/27.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dong B., Xu L., Zhou A., Hassel B. A., Lee X., Torrence P. F., Silverman R. H. Intrinsic molecular activities of the interferon-induced 2-5A-dependent RNase. J Biol Chem. 1994 May 13;269(19):14153–14158. [PubMed] [Google Scholar]
  11. Díaz-Guerra M., Rivas C., Esteban M. Full activation of RNaseL in animal cells requires binding of 2-5A within ankyrin repeats 6 to 9 of this interferon-inducible enzyme. J Interferon Cytokine Res. 1999 Feb;19(2):113–119. doi: 10.1089/107999099314252. [DOI] [PubMed] [Google Scholar]
  12. Floyd-Smith G., Slattery E., Lengyel P. Interferon action: RNA cleavage pattern of a (2'-5')oligoadenylate--dependent endonuclease. Science. 1981 May 29;212(4498):1030–1032. doi: 10.1126/science.6165080. [DOI] [PubMed] [Google Scholar]
  13. Gonzalez T. N., Sidrauski C., Dörfler S., Walter P. Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway. EMBO J. 1999 Jun 1;18(11):3119–3132. doi: 10.1093/emboj/18.11.3119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hassel B. A., Zhou A., Sotomayor C., Maran A., Silverman R. H. A dominant negative mutant of 2-5A-dependent RNase suppresses antiproliferative and antiviral effects of interferon. EMBO J. 1993 Aug;12(8):3297–3304. doi: 10.1002/j.1460-2075.1993.tb05999.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  16. Iordanov M. S., Paranjape J. M., Zhou A., Wong J., Williams B. R., Meurs E. F., Silverman R. H., Magun B. E. Activation of p38 mitogen-activated protein kinase and c-Jun NH(2)-terminal kinase by double-stranded RNA and encephalomyocarditis virus: involvement of RNase L, protein kinase R, and alternative pathways. Mol Cell Biol. 2000 Jan;20(2):617–627. doi: 10.1128/mcb.20.2.617-627.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kerr I. M., Brown R. E. pppA2'p5'A2'p5'A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):256–260. doi: 10.1073/pnas.75.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lin X., Kaul S., Rounsley S., Shea T. P., Benito M. I., Town C. D., Fujii C. Y., Mason T., Bowman C. L., Barnstead M. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature. 1999 Dec 16;402(6763):761–768. doi: 10.1038/45471. [DOI] [PubMed] [Google Scholar]
  19. Mori K., Ma W., Gething M. J., Sambrook J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell. 1993 Aug 27;74(4):743–756. doi: 10.1016/0092-8674(93)90521-q. [DOI] [PubMed] [Google Scholar]
  20. Nikawa J., Yamashita S. IRE1 encodes a putative protein kinase containing a membrane-spanning domain and is required for inositol phototrophy in Saccharomyces cerevisiae. Mol Microbiol. 1992 Jun;6(11):1441–1446. doi: 10.1111/j.1365-2958.1992.tb00864.x. [DOI] [PubMed] [Google Scholar]
  21. Niwa M., Sidrauski C., Kaufman R. J., Walter P. A role for presenilin-1 in nuclear accumulation of Ire1 fragments and induction of the mammalian unfolded protein response. Cell. 1999 Dec 23;99(7):691–702. doi: 10.1016/s0092-8674(00)81667-0. [DOI] [PubMed] [Google Scholar]
  22. Nolan-Sorden N. L., Lesiak K., Bayard B., Torrence P. F., Silverman R. H. Photochemical crosslinking in oligonucleotide-protein complexes between a bromine-substituted 2-5A analog and 2-5A-dependent RNase by ultraviolet lamp or laser. Anal Biochem. 1990 Feb 1;184(2):298–304. doi: 10.1016/0003-2697(90)90684-2. [DOI] [PubMed] [Google Scholar]
  23. Rusch L., Zhou A., Silverman R. H. Caspase-dependent apoptosis by 2',5'-oligoadenylate activation of RNase L is enhanced by IFN-beta. J Interferon Cytokine Res. 2000 Dec;20(12):1091–1100. doi: 10.1089/107999000750053762. [DOI] [PubMed] [Google Scholar]
  24. Sedgwick S. G., Smerdon S. J. The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci. 1999 Aug;24(8):311–316. doi: 10.1016/s0968-0004(99)01426-7. [DOI] [PubMed] [Google Scholar]
  25. Shamu C. E., Walter P. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J. 1996 Jun 17;15(12):3028–3039. [PMC free article] [PubMed] [Google Scholar]
  26. Sidrauski C., Cox J. S., Walter P. tRNA ligase is required for regulated mRNA splicing in the unfolded protein response. Cell. 1996 Nov 1;87(3):405–413. doi: 10.1016/s0092-8674(00)81361-6. [DOI] [PubMed] [Google Scholar]
  27. Sidrauski C., Walter P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell. 1997 Sep 19;90(6):1031–1039. doi: 10.1016/s0092-8674(00)80369-4. [DOI] [PubMed] [Google Scholar]
  28. Silverman R. H., Skehel J. J., James T. C., Wreschner D. H., Kerr I. M. rRNA cleavage as an index of ppp(A2'p)nA activity in interferon-treated encephalomyocarditis virus-infected cells. J Virol. 1983 Jun;46(3):1051–1055. doi: 10.1128/jvi.46.3.1051-1055.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tirasophon W., Welihinda A. A., Kaufman R. J. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 1998 Jun 15;12(12):1812–1824. doi: 10.1101/gad.12.12.1812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wang X. Z., Harding H. P., Zhang Y., Jolicoeur E. M., Kuroda M., Ron D. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 1998 Oct 1;17(19):5708–5717. doi: 10.1093/emboj/17.19.5708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Welihinda A. A., Kaufman R. J. The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation. J Biol Chem. 1996 Jul 26;271(30):18181–18187. doi: 10.1074/jbc.271.30.18181. [DOI] [PubMed] [Google Scholar]
  32. Wiens M., Kuusksalu A., Kelve M., Müller W. E. Origin of the interferon-inducible (2'-5')oligoadenylate synthetases: cloning of the (2'-5')oligoadenylate synthetase from the marine sponge Geodia cydonium. FEBS Lett. 1999 Nov 26;462(1-2):12–18. doi: 10.1016/s0014-5793(99)01478-7. [DOI] [PubMed] [Google Scholar]
  33. Wreschner D. H., James T. C., Silverman R. H., Kerr I. M. Ribosomal RNA cleavage, nuclease activation and 2-5A(ppp(A2'p)nA) in interferon-treated cells. Nucleic Acids Res. 1981 Apr 10;9(7):1571–1581. doi: 10.1093/nar/9.7.1571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wreschner D. H., McCauley J. W., Skehel J. J., Kerr I. M. Interferon action--sequence specificity of the ppp(A2'p)nA-dependent ribonuclease. Nature. 1981 Jan 29;289(5796):414–417. doi: 10.1038/289414a0. [DOI] [PubMed] [Google Scholar]
  35. Wreschner D. H., Silverman R. H., James T. C., Gilbert C. S., Kerr I. M. Affinity labelling and characterization of the ppp(A2'p)nA-dependent endoribonuclease from different mammalian sources. Eur J Biochem. 1982 May 17;124(2):261–268. doi: 10.1111/j.1432-1033.1982.tb06586.x. [DOI] [PubMed] [Google Scholar]
  36. Zhou A., Hassel B. A., Silverman R. H. Expression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action. Cell. 1993 Mar 12;72(5):753–765. doi: 10.1016/0092-8674(93)90403-d. [DOI] [PubMed] [Google Scholar]
  37. Zhou A., Nie H., Silverman R. H. Analysis and origins of the human and mouse RNase L genes: mediators of interferon action. Mamm Genome. 2000 Nov;11(11):989–992. doi: 10.1007/s003350010194. [DOI] [PubMed] [Google Scholar]
  38. Zhou A., Paranjape J., Brown T. L., Nie H., Naik S., Dong B., Chang A., Trapp B., Fairchild R., Colmenares C. Interferon action and apoptosis are defective in mice devoid of 2',5'-oligoadenylate-dependent RNase L. EMBO J. 1997 Nov 3;16(21):6355–6363. doi: 10.1093/emboj/16.21.6355. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES