Abstract
A cytidine-free ribozyme with RNA ligase activity was obtained by in vitro evolution, starting from a pool of random-sequence RNAs that contained only guanosine, adenosine, and uridine. This ribozyme contains 74 nt and catalyzes formation of a 3',5'-phosphodiester linkage with a catalytic rate of 0.016 min(-1). The RNA adopts a simple secondary structure based on a three-way junction motif, with ligation occurring at the end of a stem region located several nucleotides away from the junction. Cytidine was introduced to the cytidine-free ribozyme in a combinatorial fashion and additional rounds of in vitro evolution were carried out to allow the molecule to adapt to this added component. The resulting cytidine-containing ribozyme formed a 3',5' linkage with a catalytic rate of 0.32 min(-1). The improved rate of the cytidine-containing ribozyme was the result of 12 mutations, including seven added cytidines, that remodeled the internal bulge loops located adjacent to the three-way junction and stabilized the peripheral stem regions.
Full Text
The Full Text of this article is available as a PDF (191.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antao V. P., Tinoco I., Jr Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. Nucleic Acids Res. 1992 Feb 25;20(4):819–824. doi: 10.1093/nar/20.4.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartel D. P., Szostak J. W. Isolation of new ribozymes from a large pool of random sequences [see comment]. Science. 1993 Sep 10;261(5127):1411–1418. doi: 10.1126/science.7690155. [DOI] [PubMed] [Google Scholar]
- Ekland E. H., Bartel D. P. RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature. 1996 Jul 25;382(6589):373–376. doi: 10.1038/382373a0. [DOI] [PubMed] [Google Scholar]
- Ekland E. H., Szostak J. W., Bartel D. P. Structurally complex and highly active RNA ligases derived from random RNA sequences. Science. 1995 Jul 21;269(5222):364–370. doi: 10.1126/science.7618102. [DOI] [PubMed] [Google Scholar]
- Fedor M. J. Structure and function of the hairpin ribozyme. J Mol Biol. 2000 Mar 24;297(2):269–291. doi: 10.1006/jmbi.2000.3560. [DOI] [PubMed] [Google Scholar]
- Hager A. J., Szostak J. W. Isolation of novel ribozymes that ligate AMP-activated RNA substrates. Chem Biol. 1997 Aug;4(8):607–617. doi: 10.1016/s1074-5521(97)90246-5. [DOI] [PubMed] [Google Scholar]
- Hegg L. A., Fedor M. J. Kinetics and thermodynamics of intermolecular catalysis by hairpin ribozymes. Biochemistry. 1995 Dec 5;34(48):15813–15828. doi: 10.1021/bi00048a027. [DOI] [PubMed] [Google Scholar]
- Hertel K. J., Uhlenbeck O. C. The internal equilibrium of the hammerhead ribozyme reaction. Biochemistry. 1995 Feb 7;34(5):1744–1749. doi: 10.1021/bi00005a031. [DOI] [PubMed] [Google Scholar]
- Jaeger L., Wright M. C., Joyce G. F. A complex ligase ribozyme evolved in vitro from a group I ribozyme domain. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14712–14717. doi: 10.1073/pnas.96.26.14712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landweber L. F., Pokrovskaya I. D. Emergence of a dual-catalytic RNA with metal-specific cleavage and ligase activities: the spandrels of RNA evolution. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):173–178. doi: 10.1073/pnas.96.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy M., Miller S. L. The stability of the RNA bases: implications for the origin of life. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7933–7938. doi: 10.1073/pnas.95.14.7933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray V. Improved double-stranded DNA sequencing using the linear polymerase chain reaction. Nucleic Acids Res. 1989 Nov 11;17(21):8889–8889. doi: 10.1093/nar/17.21.8889. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakano S., Chadalavada D. M., Bevilacqua P. C. General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science. 2000 Feb 25;287(5457):1493–1497. doi: 10.1126/science.287.5457.1493. [DOI] [PubMed] [Google Scholar]
- Perrotta A. T., Shih I., Been M. D. Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science. 1999 Oct 1;286(5437):123–126. doi: 10.1126/science.286.5437.123. [DOI] [PubMed] [Google Scholar]
- Robertson M. P., Ellington A. D. Design and optimization of effector-activated ribozyme ligases. Nucleic Acids Res. 2000 Apr 15;28(8):1751–1759. doi: 10.1093/nar/28.8.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogers J., Joyce G. F. A ribozyme that lacks cytidine. Nature. 1999 Nov 18;402(6759):323–325. doi: 10.1038/46335. [DOI] [PubMed] [Google Scholar]
- Rohatgi R., Bartel D. P., Szostak J. W. Kinetic and mechanistic analysis of nonenzymatic, template-directed oligoribonucleotide ligation. J Am Chem Soc. 1996 Apr 10;118(14):3332–3339. doi: 10.1021/ja953712b. [DOI] [PubMed] [Google Scholar]
- Rohatgi R., Bartel D. P., Szostak J. W. Nonenzymatic, template-directed ligation of oligoribonucleotides is highly regioselective for the formation of 3'-5' phosphodiester bonds. J Am Chem Soc. 1996 Apr 10;118(14):3340–3344. doi: 10.1021/ja9537134. [DOI] [PubMed] [Google Scholar]
- Santoro S. W., Joyce G. F. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4262–4266. doi: 10.1073/pnas.94.9.4262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern S., Moazed D., Noller H. F. Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol. 1988;164:481–489. doi: 10.1016/s0076-6879(88)64064-x. [DOI] [PubMed] [Google Scholar]
- Vartanian J. P., Henry M., Wain-Hobson S. Hypermutagenic PCR involving all four transitions and a sizeable proportion of transversions. Nucleic Acids Res. 1996 Jul 15;24(14):2627–2631. doi: 10.1093/nar/24.14.2627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright M. C., Joyce G. F. Continuous in vitro evolution of catalytic function. Science. 1997 Apr 25;276(5312):614–617. doi: 10.1126/science.276.5312.614. [DOI] [PubMed] [Google Scholar]