Skip to main content
RNA logoLink to RNA
. 2001 Mar;7(3):395–404. doi: 10.1017/s135583820100228x

The effect of cytidine on the structure and function of an RNA ligase ribozyme.

J Rogers 1, G F Joyce 1
PMCID: PMC1370096  PMID: 11333020

Abstract

A cytidine-free ribozyme with RNA ligase activity was obtained by in vitro evolution, starting from a pool of random-sequence RNAs that contained only guanosine, adenosine, and uridine. This ribozyme contains 74 nt and catalyzes formation of a 3',5'-phosphodiester linkage with a catalytic rate of 0.016 min(-1). The RNA adopts a simple secondary structure based on a three-way junction motif, with ligation occurring at the end of a stem region located several nucleotides away from the junction. Cytidine was introduced to the cytidine-free ribozyme in a combinatorial fashion and additional rounds of in vitro evolution were carried out to allow the molecule to adapt to this added component. The resulting cytidine-containing ribozyme formed a 3',5' linkage with a catalytic rate of 0.32 min(-1). The improved rate of the cytidine-containing ribozyme was the result of 12 mutations, including seven added cytidines, that remodeled the internal bulge loops located adjacent to the three-way junction and stabilized the peripheral stem regions.

Full Text

The Full Text of this article is available as a PDF (191.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antao V. P., Tinoco I., Jr Thermodynamic parameters for loop formation in RNA and DNA hairpin tetraloops. Nucleic Acids Res. 1992 Feb 25;20(4):819–824. doi: 10.1093/nar/20.4.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bartel D. P., Szostak J. W. Isolation of new ribozymes from a large pool of random sequences [see comment]. Science. 1993 Sep 10;261(5127):1411–1418. doi: 10.1126/science.7690155. [DOI] [PubMed] [Google Scholar]
  3. Ekland E. H., Bartel D. P. RNA-catalysed RNA polymerization using nucleoside triphosphates. Nature. 1996 Jul 25;382(6589):373–376. doi: 10.1038/382373a0. [DOI] [PubMed] [Google Scholar]
  4. Ekland E. H., Szostak J. W., Bartel D. P. Structurally complex and highly active RNA ligases derived from random RNA sequences. Science. 1995 Jul 21;269(5222):364–370. doi: 10.1126/science.7618102. [DOI] [PubMed] [Google Scholar]
  5. Fedor M. J. Structure and function of the hairpin ribozyme. J Mol Biol. 2000 Mar 24;297(2):269–291. doi: 10.1006/jmbi.2000.3560. [DOI] [PubMed] [Google Scholar]
  6. Hager A. J., Szostak J. W. Isolation of novel ribozymes that ligate AMP-activated RNA substrates. Chem Biol. 1997 Aug;4(8):607–617. doi: 10.1016/s1074-5521(97)90246-5. [DOI] [PubMed] [Google Scholar]
  7. Hegg L. A., Fedor M. J. Kinetics and thermodynamics of intermolecular catalysis by hairpin ribozymes. Biochemistry. 1995 Dec 5;34(48):15813–15828. doi: 10.1021/bi00048a027. [DOI] [PubMed] [Google Scholar]
  8. Hertel K. J., Uhlenbeck O. C. The internal equilibrium of the hammerhead ribozyme reaction. Biochemistry. 1995 Feb 7;34(5):1744–1749. doi: 10.1021/bi00005a031. [DOI] [PubMed] [Google Scholar]
  9. Jaeger L., Wright M. C., Joyce G. F. A complex ligase ribozyme evolved in vitro from a group I ribozyme domain. Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14712–14717. doi: 10.1073/pnas.96.26.14712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Landweber L. F., Pokrovskaya I. D. Emergence of a dual-catalytic RNA with metal-specific cleavage and ligase activities: the spandrels of RNA evolution. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):173–178. doi: 10.1073/pnas.96.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levy M., Miller S. L. The stability of the RNA bases: implications for the origin of life. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7933–7938. doi: 10.1073/pnas.95.14.7933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Murray V. Improved double-stranded DNA sequencing using the linear polymerase chain reaction. Nucleic Acids Res. 1989 Nov 11;17(21):8889–8889. doi: 10.1093/nar/17.21.8889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nakano S., Chadalavada D. M., Bevilacqua P. C. General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science. 2000 Feb 25;287(5457):1493–1497. doi: 10.1126/science.287.5457.1493. [DOI] [PubMed] [Google Scholar]
  14. Perrotta A. T., Shih I., Been M. D. Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science. 1999 Oct 1;286(5437):123–126. doi: 10.1126/science.286.5437.123. [DOI] [PubMed] [Google Scholar]
  15. Robertson M. P., Ellington A. D. Design and optimization of effector-activated ribozyme ligases. Nucleic Acids Res. 2000 Apr 15;28(8):1751–1759. doi: 10.1093/nar/28.8.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rogers J., Joyce G. F. A ribozyme that lacks cytidine. Nature. 1999 Nov 18;402(6759):323–325. doi: 10.1038/46335. [DOI] [PubMed] [Google Scholar]
  17. Rohatgi R., Bartel D. P., Szostak J. W. Kinetic and mechanistic analysis of nonenzymatic, template-directed oligoribonucleotide ligation. J Am Chem Soc. 1996 Apr 10;118(14):3332–3339. doi: 10.1021/ja953712b. [DOI] [PubMed] [Google Scholar]
  18. Rohatgi R., Bartel D. P., Szostak J. W. Nonenzymatic, template-directed ligation of oligoribonucleotides is highly regioselective for the formation of 3'-5' phosphodiester bonds. J Am Chem Soc. 1996 Apr 10;118(14):3340–3344. doi: 10.1021/ja9537134. [DOI] [PubMed] [Google Scholar]
  19. Santoro S. W., Joyce G. F. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4262–4266. doi: 10.1073/pnas.94.9.4262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stern S., Moazed D., Noller H. F. Structural analysis of RNA using chemical and enzymatic probing monitored by primer extension. Methods Enzymol. 1988;164:481–489. doi: 10.1016/s0076-6879(88)64064-x. [DOI] [PubMed] [Google Scholar]
  21. Vartanian J. P., Henry M., Wain-Hobson S. Hypermutagenic PCR involving all four transitions and a sizeable proportion of transversions. Nucleic Acids Res. 1996 Jul 15;24(14):2627–2631. doi: 10.1093/nar/24.14.2627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wright M. C., Joyce G. F. Continuous in vitro evolution of catalytic function. Science. 1997 Apr 25;276(5312):614–617. doi: 10.1126/science.276.5312.614. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES