Abstract
The RNA strand in an RNA/DNA duplex with unpaired ribonucleotides can undergo self-cleavage at bulge sites in the presence of a variety of divalent metal ions (Hüsken et al., Biochemistry, 1996, 35:16591-16600). Transesterification proceeds via an in-line mechanism, with the 2'-OH of the bulged nucleotide attacking the 3'-adjacent phosphate group. The site-specificity of the reaction is most likely a consequence of the greater local conformational freedom of the RNA backbone in the bulge region. A standard A-form backbone geometry prohibits formation of an in-line arrangement between 2'-oxygen and phosphate. However, the backbone in the region of an unpaired nucleotide appears to be conducive to an in-line approach. Therefore, the bulge-mediated phosphoryl transfer reaction represents one of the simplest RNA self-cleavage systems. Here we focus on the conformational features of the RNA that underlie site-specific cleavage. The structures of an RNA/DNA duplex with single ribo-adenosyl bulges were analyzed in two crystal forms, permitting observation of 10 individual conformations of the RNA bulge moiety. The bulge geometries cover a range of relative arrangements between the 2'-oxygen of the bulged nucleotide and the P-O5' bond (including adjacent and near in-line) and give a detailed picture of the conformational changes necessary to line up the 2'-OH nucleophile and scissile bond. Although metal ions are of crucial importance in the catalysis of analogous cleavage reactions by ribozymes, it is clear that local strain or conformational flexibility in the RNA also affect cleavage selectivity and rate (Soukup & Breaker, RNA, 1999, 5:1308-1325). The geometries of the RNA bulges frozen out in the crystals provide snapshots along the reaction pathway prior to the transition state of the phosphoryl transfer reaction.
Full Text
The Full Text of this article is available as a PDF (3.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amiri K. M., Hagerman P. J. The global conformation of an active hammerhead RNA during the process of self-cleavage. J Mol Biol. 1996 Aug 16;261(2):125–134. doi: 10.1006/jmbi.1996.0446. [DOI] [PubMed] [Google Scholar]
- Beese L. S., Steitz T. A. Structural basis for the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J. 1991 Jan;10(1):25–33. doi: 10.1002/j.1460-2075.1991.tb07917.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brautigam C. A., Steitz T. A. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. Curr Opin Struct Biol. 1998 Feb;8(1):54–63. doi: 10.1016/s0959-440x(98)80010-9. [DOI] [PubMed] [Google Scholar]
- Brown R. S., Dewan J. C., Klug A. Crystallographic and biochemical investigation of the lead(II)-catalyzed hydrolysis of yeast phenylalanine tRNA. Biochemistry. 1985 Aug 27;24(18):4785–4801. doi: 10.1021/bi00339a012. [DOI] [PubMed] [Google Scholar]
- Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
- Cech T. R. The chemistry of self-splicing RNA and RNA enzymes. Science. 1987 Jun 19;236(4808):1532–1539. doi: 10.1126/science.2438771. [DOI] [PubMed] [Google Scholar]
- Dahm S. C., Derrick W. B., Uhlenbeck O. C. Evidence for the role of solvated metal hydroxide in the hammerhead cleavage mechanism. Biochemistry. 1993 Dec 7;32(48):13040–13045. doi: 10.1021/bi00211a013. [DOI] [PubMed] [Google Scholar]
- Dahm S. C., Uhlenbeck O. C. Characterization of deoxy- and ribo-containing oligonucleotide substrates in the hammerhead self-cleavage reaction. Biochimie. 1990 Nov;72(11):819–823. doi: 10.1016/0300-9084(90)90191-i. [DOI] [PubMed] [Google Scholar]
- Dahm S. C., Uhlenbeck O. C. Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry. 1991 Oct 1;30(39):9464–9469. doi: 10.1021/bi00103a011. [DOI] [PubMed] [Google Scholar]
- Earnshaw D. J., Gait M. J. Hairpin ribozyme cleavage catalyzed by aminoglycoside antibiotics and the polyamine spermine in the absence of metal ions. Nucleic Acids Res. 1998 Dec 15;26(24):5551–5561. doi: 10.1093/nar/26.24.5551. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egli M., Gessner R. V. Stereoelectronic effects of deoxyribose O4' on DNA conformation. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):180–184. doi: 10.1073/pnas.92.1.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Endo S., Shinoki T. Influence of reticuloendothelial function on the growth of transplantable rat ascites hepatoma (AH-130). Tohoku J Exp Med. 1968 Jan;94(1):81–101. doi: 10.1620/tjem.94.81. [DOI] [PubMed] [Google Scholar]
- Ennifar E., Yusupov M., Walter P., Marquet R., Ehresmann B., Ehresmann C., Dumas P. The crystal structure of the dimerization initiation site of genomic HIV-1 RNA reveals an extended duplex with two adenine bulges. Structure. 1999 Nov 15;7(11):1439–1449. doi: 10.1016/s0969-2126(00)80033-7. [DOI] [PubMed] [Google Scholar]
- Fedor M. J. Structure and function of the hairpin ribozyme. J Mol Biol. 2000 Mar 24;297(2):269–291. doi: 10.1006/jmbi.2000.3560. [DOI] [PubMed] [Google Scholar]
- Ferré-D'Amaré A. R., Zhou K., Doudna J. A. Crystal structure of a hepatitis delta virus ribozyme. Nature. 1998 Oct 8;395(6702):567–574. doi: 10.1038/26912. [DOI] [PubMed] [Google Scholar]
- Grosshans C. A., Cech T. R. Metal ion requirements for sequence-specific endoribonuclease activity of the Tetrahymena ribozyme. Biochemistry. 1989 Aug 22;28(17):6888–6894. doi: 10.1021/bi00443a017. [DOI] [PubMed] [Google Scholar]
- Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 1983 Dec;35(3 Pt 2):849–857. doi: 10.1016/0092-8674(83)90117-4. [DOI] [PubMed] [Google Scholar]
- Hampel A., Cowan J. A. A unique mechanism for RNA catalysis: the role of metal cofactors in hairpin ribozyme cleavage. Chem Biol. 1997 Jul;4(7):513–517. doi: 10.1016/s1074-5521(97)90323-9. [DOI] [PubMed] [Google Scholar]
- Hampel A. The hairpin ribozyme: discovery, two-dimensional model, and development for gene therapy. Prog Nucleic Acid Res Mol Biol. 1998;58:1–39. doi: 10.1016/s0079-6603(08)60032-x. [DOI] [PubMed] [Google Scholar]
- Hampel A., Tritz R. RNA catalytic properties of the minimum (-)sTRSV sequence. Biochemistry. 1989 Jun 13;28(12):4929–4933. doi: 10.1021/bi00438a002. [DOI] [PubMed] [Google Scholar]
- Haydock K., Allen L. C. Molecular mechanism of catalysis by RNA. Prog Clin Biol Res. 1985;172A:87–98. [PubMed] [Google Scholar]
- Hermann T., Auffinger P., Scott W. G., Westhof E. Evidence for a hydroxide ion bridging two magnesium ions at the active site of the hammerhead ribozyme. Nucleic Acids Res. 1997 Sep 1;25(17):3421–3427. doi: 10.1093/nar/25.17.3421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hermann T., Auffinger P., Westhof E. Molecular dynamics investigations of hammerhead ribozyme RNA. Eur Biophys J. 1998;27(2):153–165. doi: 10.1007/s002490050121. [DOI] [PubMed] [Google Scholar]
- Hough E., Hansen L. K., Birknes B., Jynge K., Hansen S., Hordvik A., Little C., Dodson E., Derewenda Z. High-resolution (1.5 A) crystal structure of phospholipase C from Bacillus cereus. Nature. 1989 Mar 23;338(6213):357–360. doi: 10.1038/338357a0. [DOI] [PubMed] [Google Scholar]
- Hung L. W., Holbrook E. L., Holbrook S. R. The crystal structure of the Rev binding element of HIV-1 reveals novel base pairing and conformational variability. Proc Natl Acad Sci U S A. 2000 May 9;97(10):5107–5112. doi: 10.1073/pnas.090588197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hutchins C. J., Rathjen P. D., Forster A. C., Symons R. H. Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res. 1986 May 12;14(9):3627–3640. doi: 10.1093/nar/14.9.3627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hüsken D., Goodall G., Blommers M. J., Jahnke W., Hall J., Häner R., Moser H. E. Creating RNA bulges: cleavage of RNA in RNA/DNA duplexes by metal ion catalysis. Biochemistry. 1996 Dec 24;35(51):16591–16600. doi: 10.1021/bi961700c. [DOI] [PubMed] [Google Scholar]
- Hüsken D., Goodall G., Blommers M. J., Jahnke W., Hall J., Häner R., Moser H. E. Creating RNA bulges: cleavage of RNA in RNA/DNA duplexes by metal ion catalysis. Biochemistry. 1996 Dec 24;35(51):16591–16600. doi: 10.1021/bi961700c. [DOI] [PubMed] [Google Scholar]
- Ippolito J. A., Steitz T. A. The structure of the HIV-1 RRE high affinity rev binding site at 1.6 A resolution. J Mol Biol. 2000 Jan 28;295(4):711–717. doi: 10.1006/jmbi.1999.3405. [DOI] [PubMed] [Google Scholar]
- Kim E. E., Wyckoff H. W. Reaction mechanism of alkaline phosphatase based on crystal structures. Two-metal ion catalysis. J Mol Biol. 1991 Mar 20;218(2):449–464. doi: 10.1016/0022-2836(91)90724-k. [DOI] [PubMed] [Google Scholar]
- Koizumi M., Ohtsuka E. Effects of phosphorothioate and 2-amino groups in hammerhead ribozymes on cleavage rates and Mg2+ binding. Biochemistry. 1991 May 28;30(21):5145–5150. doi: 10.1021/bi00235a005. [DOI] [PubMed] [Google Scholar]
- Kruger K., Grabowski P. J., Zaug A. J., Sands J., Gottschling D. E., Cech T. R. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell. 1982 Nov;31(1):147–157. doi: 10.1016/0092-8674(82)90414-7. [DOI] [PubMed] [Google Scholar]
- Kuimelis R. G., McLaughlin L. W. Ribozyme-mediated cleavage of a substrate analogue containing an internucleotide-bridging 5'-phosphorothioate: evidence for the single-metal model. Biochemistry. 1996 Apr 23;35(16):5308–5317. doi: 10.1021/bi952994p. [DOI] [PubMed] [Google Scholar]
- Lavery R., Sklenar H. Defining the structure of irregular nucleic acids: conventions and principles. J Biomol Struct Dyn. 1989 Feb;6(4):655–667. doi: 10.1080/07391102.1989.10507728. [DOI] [PubMed] [Google Scholar]
- Lott W. B., Pontius B. W., von Hippel P. H. A two-metal ion mechanism operates in the hammerhead ribozyme-mediated cleavage of an RNA substrate. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):542–547. doi: 10.1073/pnas.95.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKay D. B. Structure and function of the hammerhead ribozyme: an unfinished story. RNA. 1996 May;2(5):395–403. [PMC free article] [PubMed] [Google Scholar]
- Mei H. Y., Kaaret T. W., Bruice T. C. A computational approach to the mechanism of self-cleavage of hammerhead RNA. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9727–9731. doi: 10.1073/pnas.86.24.9727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray J. B., Terwey D. P., Maloney L., Karpeisky A., Usman N., Beigelman L., Scott W. G. The structural basis of hammerhead ribozyme self-cleavage. Cell. 1998 Mar 6;92(5):665–673. doi: 10.1016/s0092-8674(00)81134-4. [DOI] [PubMed] [Google Scholar]
- Nakano S., Chadalavada D. M., Bevilacqua P. C. General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science. 2000 Feb 25;287(5457):1493–1497. doi: 10.1126/science.287.5457.1493. [DOI] [PubMed] [Google Scholar]
- Nesbitt S., Hegg L. A., Fedor M. J. An unusual pH-independent and metal-ion-independent mechanism for hairpin ribozyme catalysis. Chem Biol. 1997 Aug;4(8):619–630. doi: 10.1016/s1074-5521(97)90247-7. [DOI] [PubMed] [Google Scholar]
- Nowakowski J., Shim P. J., Prasad G. S., Stout C. D., Joyce G. F. Crystal structure of an 82-nucleotide RNA-DNA complex formed by the 10-23 DNA enzyme. Nat Struct Biol. 1999 Feb;6(2):151–156. doi: 10.1038/5839. [DOI] [PubMed] [Google Scholar]
- Parkinson G., Vojtechovsky J., Clowney L., Brünger A. T., Berman H. M. New parameters for the refinement of nucleic acid-containing structures. Acta Crystallogr D Biol Crystallogr. 1996 Jan 1;52(Pt 1):57–64. doi: 10.1107/S0907444995011115. [DOI] [PubMed] [Google Scholar]
- Perreault J. P., Wu T. F., Cousineau B., Ogilvie K. K., Cedergren R. Mixed deoxyribo- and ribo-oligonucleotides with catalytic activity. Nature. 1990 Apr 5;344(6266):565–567. doi: 10.1038/344565a0. [DOI] [PubMed] [Google Scholar]
- Perrotta A. T., Shih I., Been M. D. Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science. 1999 Oct 1;286(5437):123–126. doi: 10.1126/science.286.5437.123. [DOI] [PubMed] [Google Scholar]
- Pley H. W., Flaherty K. M., McKay D. B. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994 Nov 3;372(6501):68–74. doi: 10.1038/372068a0. [DOI] [PubMed] [Google Scholar]
- Portmann S., Grimm S., Workman C., Usman N., Egli M. Crystal structures of an A-form duplex with single-adenosine bulges and a conformational basis for site-specific RNA self-cleavage. Chem Biol. 1996 Mar;3(3):173–184. doi: 10.1016/s1074-5521(96)90260-4. [DOI] [PubMed] [Google Scholar]
- Prody G. A., Bakos J. T., Buzayan J. M., Schneider I. R., Bruening G. Autolytic processing of dimeric plant virus satellite RNA. Science. 1986 Mar 28;231(4745):1577–1580. doi: 10.1126/science.231.4745.1577. [DOI] [PubMed] [Google Scholar]
- Santoro S. W., Joyce G. F. A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4262–4266. doi: 10.1073/pnas.94.9.4262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato Y., Endo T. Alterations with age of the neurons expressing P(0) in the rat spinal cord. Neurosci Lett. 2000 Mar 3;281(1):41–44. doi: 10.1016/s0304-3940(00)00806-5. [DOI] [PubMed] [Google Scholar]
- Scott W. G., Finch J. T., Klug A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell. 1995 Jun 30;81(7):991–1002. doi: 10.1016/s0092-8674(05)80004-2. [DOI] [PubMed] [Google Scholar]
- Scott W. G., Murray J. B., Arnold J. R., Stoddard B. L., Klug A. Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme. Science. 1996 Dec 20;274(5295):2065–2069. doi: 10.1126/science.274.5295.2065. [DOI] [PubMed] [Google Scholar]
- Setlik R. F., Shibata M., Sarma R. H., Sarma M. H., Kazim A. L., Ornstein R. L., Tomasi T. B., Rein R. Modeling of a possible conformational change associated with the catalytic mechanism in the hammerhead ribozyme. J Biomol Struct Dyn. 1995 Dec;13(3):515–522. doi: 10.1080/07391102.1995.10508861. [DOI] [PubMed] [Google Scholar]
- Sharmeen L., Kuo M. Y., Dinter-Gottlieb G., Taylor J. Antigenomic RNA of human hepatitis delta virus can undergo self-cleavage. J Virol. 1988 Aug;62(8):2674–2679. doi: 10.1128/jvi.62.8.2674-2679.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Slim G., Gait M. J. Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. Nucleic Acids Res. 1991 Mar 25;19(6):1183–1188. doi: 10.1093/nar/19.6.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soukup G. A., Breaker R. R. Relationship between internucleotide linkage geometry and the stability of RNA. RNA. 1999 Oct;5(10):1308–1325. doi: 10.1017/s1355838299990891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soukup G. A., Breaker R. R. Relationship between internucleotide linkage geometry and the stability of RNA. RNA. 1999 Oct;5(10):1308–1325. doi: 10.1017/s1355838299990891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steitz T. A., Steitz J. A. A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6498–6502. doi: 10.1073/pnas.90.14.6498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sudarsanakumar C., Xiong Y., Sundaralingam M. Crystal structure of an adenine bulge in the RNA chain of a DNA.RNA hybrid, d(CTCCTCTTC).r(gaagagagag). J Mol Biol. 2000 May 26;299(1):103–112. doi: 10.1006/jmbi.2000.3730. [DOI] [PubMed] [Google Scholar]
- Tesmer J. J., Sunahara R. K., Johnson R. A., Gosselin G., Gilman A. G., Sprang S. R. Two-metal-Ion catalysis in adenylyl cyclase. Science. 1999 Jul 30;285(5428):756–760. doi: 10.1126/science.285.5428.756. [DOI] [PubMed] [Google Scholar]
- Uchimaru Tadafumi, Uebayasi Masami, Hirose Takuji, Tsuzuki Seiji, Yliniemelä Ari, Tanabe Kazutoshi, Taira Kazunari. Electrostatic Interactions That Determine the Rate of Pseudorotation Processes in Oxyphosphorane Intermediates: Implications with Respect to the Roles of Metal Ions in the Enzymatic Cleavage of RNA. J Org Chem. 1996 Mar 8;61(5):1599–1608. doi: 10.1021/jo951517+. [DOI] [PubMed] [Google Scholar]
- Uhlenbeck O. C. A small catalytic oligoribonucleotide. Nature. 1987 Aug 13;328(6131):596–600. doi: 10.1038/328596a0. [DOI] [PubMed] [Google Scholar]
- Usher D. A., McHale A. H. Hydrolytic stability of helical RNA: a selective advantage for the natural 3',5'-bond. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1149–1153. doi: 10.1073/pnas.73.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Usman N., Egli M., Rich A. Large scale chemical synthesis, purification and crystallization of RNA-DNA chimeras. Nucleic Acids Res. 1992 Dec 25;20(24):6695–6699. doi: 10.1093/nar/20.24.6695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verma S., Vaish N. K., Eckstein F. Structure-function studies of the hammerhead ribozyme. Curr Opin Chem Biol. 1997 Dec;1(4):532–536. doi: 10.1016/s1367-5931(97)80049-x. [DOI] [PubMed] [Google Scholar]
- Walter N. G., Burke J. M. The hairpin ribozyme: structure, assembly and catalysis. Curr Opin Chem Biol. 1998 Feb;2(1):24–30. doi: 10.1016/s1367-5931(98)80032-x. [DOI] [PubMed] [Google Scholar]
- Wedekind J. E., McKay D. B. Crystal structure of a lead-dependent ribozyme revealing metal binding sites relevant to catalysis. Nat Struct Biol. 1999 Mar;6(3):261–268. doi: 10.1038/6700. [DOI] [PubMed] [Google Scholar]
- Westhof E. Chemical diversity in RNA cleavage. Science. 1999 Oct 1;286(5437):61–62. doi: 10.1126/science.286.5437.61. [DOI] [PubMed] [Google Scholar]
- Wincott F., DiRenzo A., Shaffer C., Grimm S., Tracz D., Workman C., Sweedler D., Gonzalez C., Scaringe S., Usman N. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucleic Acids Res. 1995 Jul 25;23(14):2677–2684. doi: 10.1093/nar/23.14.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu H. N., Lin Y. J., Lin F. P., Makino S., Chang M. F., Lai M. M. Human hepatitis delta virus RNA subfragments contain an autocleavage activity. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1831–1835. doi: 10.1073/pnas.86.6.1831. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xiong Y., Sundaralingam M. Two crystal forms of helix II of Xenopus laevis 5S rRNA with a cytosine bulge. RNA. 2000 Sep;6(9):1316–1324. doi: 10.1017/s135583820000090x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young K. J., Gill F., Grasby J. A. Metal ions play a passive role in the hairpin ribozyme catalysed reaction. Nucleic Acids Res. 1997 Oct 1;25(19):3760–3766. doi: 10.1093/nar/25.19.3760. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Tol H., Buzayan J. M., Feldstein P. A., Eckstein F., Bruening G. Two autolytic processing reactions of a satellite RNA proceed with inversion of configuration. Nucleic Acids Res. 1990 Apr 25;18(8):1971–1975. doi: 10.1093/nar/18.8.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
