Skip to main content
RNA logoLink to RNA
. 2001 Mar;7(3):435–444. doi: 10.1017/s1355838201001339

Fending off decay: a combinatorial approach in intact cells for identifying mRNA stability elements.

Z Chrzanowska-Lightowlers 1, R N Lightowlers 1
PMCID: PMC1370099  PMID: 11333023

Abstract

The strategy of systematic evolution, whereby nucleic acid sequences or conformers can be selected and amplified from a randomized population, has been exploited by many research groups for numerous purposes. It is, however, a technique largely performed in vitro, under nonphysiological conditions. We have now modified this in vitro approach to accomplish selection in growing cells. Here, we report that this new methodology has been used in vivo to select RNA elements that confer increased transcript stability. A randomized cassette was embedded in a 3'-untranslated region (UTR), downstream from the luciferase reporter open reading frame. A heterogeneous population of capped luciferase mRNA was then generated by in vitro transcription. Human liver Hep G2 cells were electroporated with this population of luciferase mRNA and total cytoplasmic RNA was isolated after varying lengths of incubation. Following RT-PCR, the 3' UTR was used to reconstruct a new population of luciferase templates, permitting subsequent cycles of in vitro transcription, electroporation, RNA isolation, and RT-PCR. Increasing the incubation time at each cycle before RNA isolation imposed selection for stable transcripts. The functional half-life of the luciferase mRNA population increased from 55 to 140 min after four cycles. Subsequent sequencing of the selected 3' UTRs revealed G-U rich elements in clones with extended chemical and functional half-lives.

Full Text

The Full Text of this article is available as a PDF (712.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997 Sep 1;25(17):3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amara F. M., Junaid A., Clough R. R., Liang B. TGF-beta(1), regulation of alzheimer amyloid precursor protein mRNA expression in a normal human astrocyte cell line: mRNA stabilization. Brain Res Mol Brain Res. 1999 Jul 23;71(1):42–49. doi: 10.1016/s0169-328x(99)00158-8. [DOI] [PubMed] [Google Scholar]
  3. Bailey T. L., Gribskov M. Methods and statistics for combining motif match scores. J Comput Biol. 1998 Summer;5(2):211–221. doi: 10.1089/cmb.1998.5.211. [DOI] [PubMed] [Google Scholar]
  4. Bashirullah A., Cooperstock R. L., Lipshitz H. D. RNA localization in development. Annu Rev Biochem. 1998;67:335–394. doi: 10.1146/annurev.biochem.67.1.335. [DOI] [PubMed] [Google Scholar]
  5. Beelman C. A., Parker R. Degradation of mRNA in eukaryotes. Cell. 1995 Apr 21;81(2):179–183. doi: 10.1016/0092-8674(95)90326-7. [DOI] [PubMed] [Google Scholar]
  6. Bishop J. S., Guy-Caffey J. K., Ojwang J. O., Smith S. R., Hogan M. E., Cossum P. A., Rando R. F., Chaudhary N. Intramolecular G-quartet motifs confer nuclease resistance to a potent anti-HIV oligonucleotide. J Biol Chem. 1996 Mar 8;271(10):5698–5703. doi: 10.1074/jbc.271.10.5698. [DOI] [PubMed] [Google Scholar]
  7. Cañete-Soler R., Schwartz M. L., Hua Y., Schlaepfer W. W. Stability determinants are localized to the 3'-untranslated region and 3'-coding region of the neurofilament light subunit mRNA using a tetracycline-inducible promoter. J Biol Chem. 1998 May 15;273(20):12650–12654. doi: 10.1074/jbc.273.20.12650. [DOI] [PubMed] [Google Scholar]
  8. Cañete-Soler R., Silberg D. G., Gershon M. D., Schlaepfer W. W. Mutation in neurofilament transgene implicates RNA processing in the pathogenesis of neurodegenerative disease. J Neurosci. 1999 Feb 15;19(4):1273–1283. doi: 10.1523/JNEUROSCI.19-04-01273.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chang J. W., Schumacher E., Coulter P. M., 2nd, Vinters H. V., Watson J. B. Dendritic translocation of RC3/neurogranin mRNA in normal aging, Alzheimer disease and fronto-temporal dementia. J Neuropathol Exp Neurol. 1997 Oct;56(10):1105–1118. doi: 10.1097/00005072-199710000-00004. [DOI] [PubMed] [Google Scholar]
  10. Chen C. Y., Shyu A. B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci. 1995 Nov;20(11):465–470. doi: 10.1016/s0968-0004(00)89102-1. [DOI] [PubMed] [Google Scholar]
  11. Cheong C., Moore P. B. Solution structure of an unusually stable RNA tetraplex containing G- and U-quartet structures. Biochemistry. 1992 Sep 15;31(36):8406–8414. doi: 10.1021/bi00151a003. [DOI] [PubMed] [Google Scholar]
  12. Chkheidze A. N., Lyakhov D. L., Makeyev A. V., Morales J., Kong J., Liebhaber S. A. Assembly of the alpha-globin mRNA stability complex reflects binary interaction between the pyrimidine-rich 3' untranslated region determinant and poly(C) binding protein alphaCP. Mol Cell Biol. 1999 Jul;19(7):4572–4581. doi: 10.1128/mcb.19.7.4572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chrzanowska-Lightowlers Z. M., Preiss T., Lightowlers R. N. Inhibition of mitochondrial protein synthesis promotes increased stability of nuclear-encoded respiratory gene transcripts. J Biol Chem. 1994 Nov 4;269(44):27322–27328. [PubMed] [Google Scholar]
  14. Czyzyk-Krzeska M. F., Bendixen A. C. Identification of the poly(C) binding protein in the complex associated with the 3' untranslated region of erythropoietin messenger RNA. Blood. 1999 Mar 15;93(6):2111–2120. [PubMed] [Google Scholar]
  15. Czyzyk-Krzeska M. F., Beresh J. E. Characterization of the hypoxia-inducible protein binding site within the pyrimidine-rich tract in the 3'-untranslated region of the tyrosine hydroxylase mRNA. J Biol Chem. 1996 Feb 9;271(6):3293–3299. doi: 10.1074/jbc.271.6.3293. [DOI] [PubMed] [Google Scholar]
  16. Dahanukar A., Wharton R. P. The Nanos gradient in Drosophila embryos is generated by translational regulation. Genes Dev. 1996 Oct 15;10(20):2610–2620. doi: 10.1101/gad.10.20.2610. [DOI] [PubMed] [Google Scholar]
  17. Decker C. J., Parker R. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 1993 Aug;7(8):1632–1643. doi: 10.1101/gad.7.8.1632. [DOI] [PubMed] [Google Scholar]
  18. Di Noia J. M., D'Orso I., Sánchez D. O., Frasch A. C. AU-rich elements in the 3'-untranslated region of a new mucin-type gene family of Trypanosoma cruzi confers mRNA instability and modulates translation efficiency. J Biol Chem. 2000 Apr 7;275(14):10218–10227. doi: 10.1074/jbc.275.14.10218. [DOI] [PubMed] [Google Scholar]
  19. Eckes B., Mauch C., Hüppe G., Krieg T. Differential regulation of transcription and transcript stability of pro-alpha 1(I) collagen and fibronectin in activated fibroblasts derived from patients with systemic scleroderma. Biochem J. 1996 Apr 15;315(Pt 2):549–554. doi: 10.1042/bj3150549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Fernández-Cañn J. M., Peñalva M. A. Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue. J Biol Chem. 1998 Jan 2;273(1):329–337. doi: 10.1074/jbc.273.1.329. [DOI] [PubMed] [Google Scholar]
  21. Gallie D. R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 1991 Nov;5(11):2108–2116. doi: 10.1101/gad.5.11.2108. [DOI] [PubMed] [Google Scholar]
  22. Grimm C., Lund E., Dahlberg J. E. In vivo selection of RNAs that localize in the nucleus. EMBO J. 1997 Feb 17;16(4):793–806. doi: 10.1093/emboj/16.4.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hansen W. R., Barsic-Tress N., Taylor L., Curthoys N. P. The 3'-nontranslated region of rat renal glutaminase mRNA contains a pH-responsive stability element. Am J Physiol. 1996 Jul;271(1 Pt 2):F126–F131. doi: 10.1152/ajprenal.1996.271.1.F126. [DOI] [PubMed] [Google Scholar]
  24. Holcik M., Liebhaber S. A. Four highly stable eukaryotic mRNAs assemble 3' untranslated region RNA-protein complexes sharing cis and trans components. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2410–2414. doi: 10.1073/pnas.94.6.2410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Imataka H., Gradi A., Sonenberg N. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 1998 Dec 15;17(24):7480–7489. doi: 10.1093/emboj/17.24.7480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Jacobs Anderson J. S., Parker R. Computational identification of cis-acting elements affecting post-transcriptional control of gene expression in Saccharomyces cerevisiae. Nucleic Acids Res. 2000 Apr 1;28(7):1604–1617. doi: 10.1093/nar/28.7.1604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jacobs G. H., Stockwell P. A., Schrieber M. J., Tate W. P., Brown C. M. Transterm: a database of messenger RNA components and signals. Nucleic Acids Res. 2000 Jan 1;28(1):293–295. doi: 10.1093/nar/28.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jeddi P. A., Lund T., Bodman K. B., Sumar N., Lydyard P. M., Pouncey L., Heath L. S., Kidd V. J., Delves P. J. Reduced galactosyltransferase mRNA levels are associated with the agalactosyl IgG found in arthritis-prone MRL-lpr/lpr strain mice. Immunology. 1994 Nov;83(3):484–488. [PMC free article] [PubMed] [Google Scholar]
  29. Kim J., Cheong C., Moore P. B. Tetramerization of an RNA oligonucleotide containing a GGGG sequence. Nature. 1991 May 23;351(6324):331–332. doi: 10.1038/351331a0. [DOI] [PubMed] [Google Scholar]
  30. Kislauskis E. H., Zhu X., Singer R. H. beta-Actin messenger RNA localization and protein synthesis augment cell motility. J Cell Biol. 1997 Mar 24;136(6):1263–1270. doi: 10.1083/jcb.136.6.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Kohn D. T., Tsai K. C., Cansino V. V., Neve R. L., Perrone-Bizzozero N. I. Role of highly conserved pyrimidine-rich sequences in the 3' untranslated region of the GAP-43 mRNA in mRNA stability and RNA-protein interactions. Brain Res Mol Brain Res. 1996 Mar;36(2):240–250. doi: 10.1016/0169-328x(95)00239-o. [DOI] [PubMed] [Google Scholar]
  32. Laterza O. F., Hansen W. R., Taylor L., Curthoys N. P. Identification of an mRNA-binding protein and the specific elements that may mediate the pH-responsive induction of renal glutaminase mRNA. J Biol Chem. 1997 Sep 5;272(36):22481–22488. doi: 10.1074/jbc.272.36.22481. [DOI] [PubMed] [Google Scholar]
  33. Maity A., Solomon D. Both increased stability and transcription contribute to the induction of the urokinase plasminogen activator receptor (uPAR) message by hypoxia. Exp Cell Res. 2000 Mar 15;255(2):250–257. doi: 10.1006/excr.1999.4804. [DOI] [PubMed] [Google Scholar]
  34. Melkonyan H., Sorg C., Klempt M. Electroporation efficiency in mammalian cells is increased by dimethyl sulfoxide (DMSO). Nucleic Acids Res. 1996 Nov 1;24(21):4356–4357. doi: 10.1093/nar/24.21.4356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mitchell P., Tollervey D. mRNA stability in eukaryotes. Curr Opin Genet Dev. 2000 Apr;10(2):193–198. doi: 10.1016/s0959-437x(00)00063-0. [DOI] [PubMed] [Google Scholar]
  36. Muhlrad D., Decker C. J., Parker R. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol Cell Biol. 1995 Apr;15(4):2145–2156. doi: 10.1128/mcb.15.4.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pesole G., Liuni S. Internet resources for the functional analysis of 5' and 3' untranslated regions of eukaryotic mRNAs. Trends Genet. 1999 Sep;15(9):378–378. doi: 10.1016/s0168-9525(99)01795-3. [DOI] [PubMed] [Google Scholar]
  38. Rajagopalan L. E., Malter J. S. Turnover and translation of in vitro synthesized messenger RNAs in transfected, normal cells. J Biol Chem. 1996 Aug 16;271(33):19871–19876. doi: 10.1074/jbc.271.33.19871. [DOI] [PubMed] [Google Scholar]
  39. Rizzuto R., Nakase H., Darras B., Francke U., Fabrizi G. M., Mengel T., Walsh F., Kadenbach B., DiMauro S., Schon E. A. A gene specifying subunit VIII of human cytochrome c oxidase is localized to chromosome 11 and is expressed in both muscle and non-muscle tissues. J Biol Chem. 1989 Jun 25;264(18):10595–10600. [PubMed] [Google Scholar]
  40. Ross J. mRNA stability in mammalian cells. Microbiol Rev. 1995 Sep;59(3):423–450. doi: 10.1128/mr.59.3.423-450.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sela-Brown A., Silver J., Brewer G., Naveh-Many T. Identification of AUF1 as a parathyroid hormone mRNA 3'-untranslated region-binding protein that determines parathyroid hormone mRNA stability. J Biol Chem. 2000 Mar 10;275(10):7424–7429. doi: 10.1074/jbc.275.10.7424. [DOI] [PubMed] [Google Scholar]
  42. Semenza G. L., Roth P. H., Fang H. M., Wang G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994 Sep 23;269(38):23757–23763. [PubMed] [Google Scholar]
  43. Shaw G., Kamen R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 1986 Aug 29;46(5):659–667. doi: 10.1016/0092-8674(86)90341-7. [DOI] [PubMed] [Google Scholar]
  44. Tanguay R. L., Gallie D. R. Translational efficiency is regulated by the length of the 3' untranslated region. Mol Cell Biol. 1996 Jan;16(1):146–156. doi: 10.1128/mcb.16.1.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tiedge H., Bloom F. E., Richter D. RNA, whither goest thou? Science. 1999 Jan 8;283(5399):186–187. doi: 10.1126/science.283.5399.186. [DOI] [PubMed] [Google Scholar]
  46. Weiss I. M., Liebhaber S. A. Erythroid cell-specific mRNA stability elements in the alpha 2-globin 3' nontranslated region. Mol Cell Biol. 1995 May;15(5):2457–2465. doi: 10.1128/mcb.15.5.2457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Zeviani M., Nakagawa M., Herbert J., Lomax M. I., Grossman L. I., Sherbany A. A., Miranda A. F., DiMauro S., Schon E. A. Isolation of a cDNA clone encoding subunit IV of human cytochrome c oxidase. Gene. 1987;55(2-3):205–217. doi: 10.1016/0378-1119(87)90281-2. [DOI] [PubMed] [Google Scholar]
  48. Zubiaga A. M., Belasco J. G., Greenberg M. E. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol Cell Biol. 1995 Apr;15(4):2219–2230. doi: 10.1128/mcb.15.4.2219. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES