Skip to main content
RNA logoLink to RNA
. 2001 Mar;7(3):483–494. doi: 10.1017/s1355838201001984

Translational control by delayed RNA folding: identification of the kinetic trap.

D van Meerten 1, G Girard 1, J van Duin 1
PMCID: PMC1370103  PMID: 11333027

Abstract

The maturation or A-protein gene of single-stranded RNA phage MS2 is preceded by a 130-nt long untranslated leader. When MS2 RNA folding is at equilibrium, the gene is untranslatable because the leader adopts a well-defined cloverleaf structure in which the Shine-Dalgarno (SD) sequence of the maturation gene is taken up in long-distance base pairing with an upstream complementary sequence (UCS). Synthesis of the A-protein takes place transiently while the RNA is synthesized from the minus strand. This requires that formation of the inhibitory cloverleaf is slow. In vitro, the folding delay was on the order of minutes. Here, we present evidence that this postponed folding is caused by the formation of a metastable intermediate. This intermediate is a small local hairpin that contains the UCS in its loop, thereby preventing or slowing down its pairing with the SD sequence. Mutants in which the small hairpin could not be formed made no detectable amounts of A-protein and were barely viable. Apparently, here the cloverleaf formed quicker than ribosomes could bind. On the other hand, mutants in which the small intermediary hairpin was stabilized produced more A-protein than wild type and were viable. One hardly growing mutant that could not form the metastable hairpin and did not make detectable amounts of A-protein was evolved. The emerging pseudo-revertant had selected two second site repressor mutations that allowed reconstruction of a variant of the metastable intermediate. The pseudo-revertant had also regained the capacity to produce the A-protein.

Full Text

The Full Text of this article is available as a PDF (487.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adhin M. R., Hirashima A., van Duin J. Nucleotide sequence from the ssRNA bacteriophage JP34 resolves the discrepancy between serological and biophysical classification. Virology. 1989 May;170(1):238–242. doi: 10.1016/0042-6822(89)90371-1. [DOI] [PubMed] [Google Scholar]
  2. Adhin M. R., van Duin J. Scanning model for translational reinitiation in eubacteria. J Mol Biol. 1990 Jun 20;213(4):811–818. doi: 10.1016/S0022-2836(05)80265-7. [DOI] [PubMed] [Google Scholar]
  3. Berkhout B., Schmidt B. F., van Strien A., van Boom J., van Westrenen J., van Duin J. Lysis gene of bacteriophage MS2 is activated by translation termination at the overlapping coat gene. J Mol Biol. 1987 Jun 5;195(3):517–524. doi: 10.1016/0022-2836(87)90180-x. [DOI] [PubMed] [Google Scholar]
  4. Biebricher C. K., Luce R. Sequence analysis of RNA species synthesized by Q beta replicase without template. Biochemistry. 1993 May 11;32(18):4848–4854. doi: 10.1021/bi00069a021. [DOI] [PubMed] [Google Scholar]
  5. Clodi E., Semrad K., Schroeder R. Assaying RNA chaperone activity in vivo using a novel RNA folding trap. EMBO J. 1999 Jul 1;18(13):3776–3782. doi: 10.1093/emboj/18.13.3776. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Crothers D. M., Cole P. E., Hilbers C. W., Shulman R. G. The molecular mechanism of thermal unfolding of Escherichia coli formylmethionine transfer RNA. J Mol Biol. 1974 Jul 25;87(1):63–88. doi: 10.1016/0022-2836(74)90560-9. [DOI] [PubMed] [Google Scholar]
  7. Gerdes K., Gultyaev A. P., Franch T., Pedersen K., Mikkelsen N. D. Antisense RNA-regulated programmed cell death. Annu Rev Genet. 1997;31:1–31. doi: 10.1146/annurev.genet.31.1.1. [DOI] [PubMed] [Google Scholar]
  8. Groeneveld H., Thimon K., van Duin J. Translational control of maturation-protein synthesis in phage MS2: a role for the kinetics of RNA folding? RNA. 1995 Mar;1(1):79–88. [PMC free article] [PubMed] [Google Scholar]
  9. Hartz D., McPheeters D. S., Gold L. Influence of mRNA determinants on translation initiation in Escherichia coli. J Mol Biol. 1991 Mar 5;218(1):83–97. doi: 10.1016/0022-2836(91)90875-7. [DOI] [PubMed] [Google Scholar]
  10. Higgs P. G. RNA secondary structure: physical and computational aspects. Q Rev Biophys. 2000 Aug;33(3):199–253. doi: 10.1017/s0033583500003620. [DOI] [PubMed] [Google Scholar]
  11. Inokuchi Y., Takahashi R., Hirose T., Inayama S., Jacobson A. B., Hirashima A. The complete nucleotide sequence of the group II RNA coliphage GA. J Biochem. 1986 Apr;99(4):1169–1180. doi: 10.1093/oxfordjournals.jbchem.a135580. [DOI] [PubMed] [Google Scholar]
  12. Kolakofsky D., Weissmann C. Possible mechanism for transition of viral RNA from polysome to replication complex. Nat New Biol. 1971 May 12;231(19):42–46. doi: 10.1038/newbio231042a0. [DOI] [PubMed] [Google Scholar]
  13. Kondo M. Structure and function of RNA replicase of bacteriophage Qbeta. Arch Int Physiol Biochim. 1975 Dec;83(5):909–948. [PubMed] [Google Scholar]
  14. Nagel J. H., Gultyaev A. P., Gerdes K., Pleij C. W. Metastable structures and refolding kinetics in hok mRNA of plasmid R1. RNA. 1999 Nov;5(11):1408–1418. doi: 10.1017/s1355838299990805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Olsthoorn R. C., Licis N., van Duin J. Leeway and constraints in the forced evolution of a regulatory RNA helix. EMBO J. 1994 Jun 1;13(11):2660–2668. doi: 10.1002/j.1460-2075.1994.tb06556.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Paranchych W., Frost L. S. The physiology and biochemistry of pili. Adv Microb Physiol. 1988;29:53–114. doi: 10.1016/s0065-2911(08)60346-x. [DOI] [PubMed] [Google Scholar]
  17. Poot R. A., Tsareva N. V., Boni I. V., van Duin J. RNA folding kinetics regulates translation of phage MS2 maturation gene. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10110–10115. doi: 10.1073/pnas.94.19.10110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Remaut E., Stanssens P., Fiers W. Plasmid vectors for high-efficiency expression controlled by the PL promoter of coliphage lambda. Gene. 1981 Oct;15(1):81–93. doi: 10.1016/0378-1119(81)90106-2. [DOI] [PubMed] [Google Scholar]
  19. Thirumalai D., Woodson S. A. Maximizing RNA folding rates: a balancing act. RNA. 2000 Jun;6(6):790–794. doi: 10.1017/s1355838200000522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Thomson J. B., Lilley D. M. The influence of junction conformation on RNA cleavage by the hairpin ribozyme in its natural junction form. RNA. 1999 Feb;5(2):180–187. doi: 10.1017/s1355838299981670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. van Himbergen J., van Geffen B., van Duin J. Translational control by a long range RNA-RNA interaction; a basepair substitution analysis. Nucleic Acids Res. 1993 Apr 25;21(8):1713–1717. doi: 10.1093/nar/21.8.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES