Skip to main content
RNA logoLink to RNA
. 2001 Apr;7(4):499–512. doi: 10.1017/s1355838201002515

Geometric nomenclature and classification of RNA base pairs.

N B Leontis 1, E Westhof 1
PMCID: PMC1370104  PMID: 11345429

Abstract

Non-Watson-Crick base pairs mediate specific interactions responsible for RNA-RNA self-assembly and RNA-protein recognition. An unambiguous and descriptive nomenclature with well-defined and nonoverlapping parameters is needed to communicate concisely structural information about RNA base pairs. The definitions should reflect underlying molecular structures and interactions and, thus, facilitate automated annotation, classification, and comparison of new RNA structures. We propose a classification based on the observation that the planar edge-to-edge, hydrogen-bonding interactions between RNA bases involve one of three distinct edges: the Watson-Crick edge, the Hoogsteen edge, and the Sugar edge (which includes the 2'-OH and which has also been referred to as the Shallow-groove edge). Bases can interact in either of two orientations with respect to the glycosidic bonds, cis or trans relative to the hydrogen bonds. This gives rise to 12 basic geometric types with at least two H bonds connecting the bases. For each geometric type, the relative orientations of the strands can be easily deduced. High-resolution examples of 11 of the 12 geometries are presently available. Bifurcated pairs, in which a single exocyclic carbonyl or amino group of one base directly contacts the edge of a second base, and water-inserted pairs, in which single functional groups on each base interact directly, are intermediate between two of the standard geometries. The nomenclature facilitates the recognition of isosteric relationships among base pairs within each geometry, and thus facilitates the recognition of recurrent three-dimensional motifs from comparison of homologous sequences. Graphical conventions are proposed for displaying non-Watson-Crick interactions on a secondary structure diagram. The utility of the classification in homology modeling of RNA tertiary motifs is illustrated.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ban N., Nissen P., Hansen J., Moore P. B., Steitz T. A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science. 2000 Aug 11;289(5481):905–920. doi: 10.1126/science.289.5481.905. [DOI] [PubMed] [Google Scholar]
  2. Batey R. T., Rambo R. P., Lucast L., Rha B., Doudna J. A. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science. 2000 Feb 18;287(5456):1232–1239. doi: 10.1126/science.287.5456.1232. [DOI] [PubMed] [Google Scholar]
  3. Batey RT, Rambo RP, Doudna JA. Tertiary Motifs in RNA Structure and Folding. Angew Chem Int Ed Engl. 1999 Aug;38(16):2326–2343. doi: 10.1002/(sici)1521-3773(19990816)38:16<2326::aid-anie2326>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  4. Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
  5. Cate J. H., Yusupov M. M., Yusupova G. Z., Earnest T. N., Noller H. F. X-ray crystal structures of 70S ribosome functional complexes. Science. 1999 Sep 24;285(5436):2095–2104. doi: 10.1126/science.285.5436.2095. [DOI] [PubMed] [Google Scholar]
  6. Correll C. C., Freeborn B., Moore P. B., Steitz T. A. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell. 1997 Nov 28;91(5):705–712. doi: 10.1016/s0092-8674(00)80457-2. [DOI] [PubMed] [Google Scholar]
  7. Correll C. C., Munishkin A., Chan Y. L., Ren Z., Wool I. G., Steitz T. A. Crystal structure of the ribosomal RNA domain essential for binding elongation factors. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13436–13441. doi: 10.1073/pnas.95.23.13436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crick F. H. Codon--anticodon pairing: the wobble hypothesis. J Mol Biol. 1966 Aug;19(2):548–555. doi: 10.1016/s0022-2836(66)80022-0. [DOI] [PubMed] [Google Scholar]
  9. Damberger S. H., Gutell R. R. A comparative database of group I intron structures. Nucleic Acids Res. 1994 Sep;22(17):3508–3510. doi: 10.1093/nar/22.17.3508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ferré-D'Amaré A. R., Doudna J. A. RNA folds: insights from recent crystal structures. Annu Rev Biophys Biomol Struct. 1999;28:57–73. doi: 10.1146/annurev.biophys.28.1.57. [DOI] [PubMed] [Google Scholar]
  11. Guex N., Peitsch M. C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997 Dec;18(15):2714–2723. doi: 10.1002/elps.1150181505. [DOI] [PubMed] [Google Scholar]
  12. Hermann T., Patel D. J. Stitching together RNA tertiary architectures. J Mol Biol. 1999 Dec 10;294(4):829–849. doi: 10.1006/jmbi.1999.3312. [DOI] [PubMed] [Google Scholar]
  13. Jovine L., Hainzl T., Oubridge C., Scott W. G., Li J., Sixma T. K., Wonacott A., Skarzynski T., Nagai K. Crystal structure of the ffh and EF-G binding sites in the conserved domain IV of Escherichia coli 4.5S RNA. Structure. 2000 May 15;8(5):527–540. doi: 10.1016/s0969-2126(00)00137-4. [DOI] [PubMed] [Google Scholar]
  14. Klinck R., Westhof E., Walker S., Afshar M., Collier A., Aboul-Ela F. A potential RNA drug target in the hepatitis C virus internal ribosomal entry site. RNA. 2000 Oct;6(10):1423–1431. doi: 10.1017/s1355838200000935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lavery R., Zakrzewska K., Sun J. S., Harvey S. C. A comprehensive classification of nucleic acid structural families based on strand direction and base pairing. Nucleic Acids Res. 1992 Oct 11;20(19):5011–5016. doi: 10.1093/nar/20.19.5011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Leontis N. B., Westhof E. A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs. J Mol Biol. 1998 Oct 30;283(3):571–583. doi: 10.1006/jmbi.1998.2106. [DOI] [PubMed] [Google Scholar]
  17. Leontis N. B., Westhof E. Conserved geometrical base-pairing patterns in RNA. Q Rev Biophys. 1998 Nov;31(4):399–455. doi: 10.1017/s0033583599003479. [DOI] [PubMed] [Google Scholar]
  18. Leontis N. B., Westhof E. The 5S rRNA loop E: chemical probing and phylogenetic data versus crystal structure. RNA. 1998 Sep;4(9):1134–1153. doi: 10.1017/s1355838298980566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Masquida B., Westhof E. On the wobble GoU and related pairs. RNA. 2000 Jan;6(1):9–15. doi: 10.1017/s1355838200992082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Michel F., Jacquier A., Dujon B. Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie. 1982 Oct;64(10):867–881. doi: 10.1016/s0300-9084(82)80349-0. [DOI] [PubMed] [Google Scholar]
  21. Nagaswamy U., Voss N., Zhang Z., Fox G. E. Database of non-canonical base pairs found in known RNA structures. Nucleic Acids Res. 2000 Jan 1;28(1):375–376. doi: 10.1093/nar/28.1.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nissen P., Hansen J., Ban N., Moore P. B., Steitz T. A. The structural basis of ribosome activity in peptide bond synthesis. Science. 2000 Aug 11;289(5481):920–930. doi: 10.1126/science.289.5481.920. [DOI] [PubMed] [Google Scholar]
  23. Schluenzen F., Tocilj A., Zarivach R., Harms J., Gluehmann M., Janell D., Bashan A., Bartels H., Agmon I., Franceschi F. Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell. 2000 Sep 1;102(5):615–623. doi: 10.1016/s0092-8674(00)00084-2. [DOI] [PubMed] [Google Scholar]
  24. Su L., Chen L., Egli M., Berger J. M., Rich A. Minor groove RNA triplex in the crystal structure of a ribosomal frameshifting viral pseudoknot. Nat Struct Biol. 1999 Mar;6(3):285–292. doi: 10.1038/6722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Varani G., McClain W. H. The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems. EMBO Rep. 2000 Jul;1(1):18–23. doi: 10.1093/embo-reports/kvd001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Westhof E., Dumas P., Moras D. Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. Acta Crystallogr A. 1988 Mar 1;44(Pt 2):112–123. [PubMed] [Google Scholar]
  27. Westhof E., Fritsch V. RNA folding: beyond Watson-Crick pairs. Structure. 2000 Mar 15;8(3):R55–R65. doi: 10.1016/s0969-2126(00)00112-x. [DOI] [PubMed] [Google Scholar]
  28. Westhof E. Westhof's rule. Nature. 1992 Aug 6;358(6386):459–460. doi: 10.1038/358459b0. [DOI] [PubMed] [Google Scholar]
  29. Wimberly B. T., Brodersen D. E., Clemons W. M., Jr, Morgan-Warren R. J., Carter A. P., Vonrhein C., Hartsch T., Ramakrishnan V. Structure of the 30S ribosomal subunit. Nature. 2000 Sep 21;407(6802):327–339. doi: 10.1038/35030006. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES