Skip to main content
RNA logoLink to RNA
. 2001 Apr;7(4):524–536. doi: 10.1017/s1355838201002175

Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes.

G A Soukup 1, E C DeRose 1, M Koizumi 1, R R Breaker 1
PMCID: PMC1370106  PMID: 11345431

Abstract

Allosteric ribozymes are engineered RNAs that operate as molecular switches whose rates of catalytic activity are modulated by the binding of specific effector molecules. New RNA molecular switches can be created by using "allosteric selection," a molecular engineering process that combines modular rational design and in vitro evolution strategies. In this report, we describe the characterization of 3',5'-cyclic nucleotide monophosphate (cNMP)-dependent hammerhead ribozymes that were created using allosteric selection (Koizumi et al., Nat Struct Biol, 1999, 6:1062-1071). Artificial phylogeny data generated by random mutagenesis and reselection of existing cGMP-, cCMP-, and cAMP-dependent ribozymes indicate that each is comprised of distinct effector-binding and catalytic domains. In addition, patterns of nucleotide covariation and direct mutational analysis both support distinct secondary-structure organizations for the effector-binding domains. Guided by these structural models, we were able to disintegrate each allosteric ribozyme into separate ligand-binding and catalytic modules. Examinations of the independent effector-binding domains reveal that each retains its corresponding cNMP-binding function. These results validate the use of allosteric selection and modular engineering as a means of simultaneously generating new nucleic acid structures that selectively bind ligands. Furthermore, we demonstrate that the binding affinity of an allosteric ribozyme can be improved through random mutagenesis and allosteric selection under conditions that favor tighter binding. This "affinity maturation" effect is expected to be a valuable attribute of allosteric selection as future endeavors seek to apply engineered allosteric ribozymes as biosensor components and as controllable genetic switches.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Araki M., Okuno Y., Hara Y., Sugiura Y. Allosteric regulation of a ribozyme activity through ligand-induced conformational change. Nucleic Acids Res. 1998 Jul 15;26(14):3379–3384. doi: 10.1093/nar/26.14.3379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breaker Ronald R. In Vitro Selection of Catalytic Polynucleotides. Chem Rev. 1997 Apr 1;97(2):371–390. doi: 10.1021/cr960008k. [DOI] [PubMed] [Google Scholar]
  3. Carola C., Eckstein F. Nucleic acid enzymes. Curr Opin Chem Biol. 1999 Jun;3(3):274–283. doi: 10.1016/S1367-5931(99)80043-X. [DOI] [PubMed] [Google Scholar]
  4. Chow Christine S., Bogdan Felicia M. A Structural Basis for RNAminus signLigand Interactions. Chem Rev. 1997 Aug 5;97(5):1489–1514. doi: 10.1021/cr960415w. [DOI] [PubMed] [Google Scholar]
  5. Famulok M. Oligonucleotide aptamers that recognize small molecules. Curr Opin Struct Biol. 1999 Jun;9(3):324–329. doi: 10.1016/S0959-440X(99)80043-8. [DOI] [PubMed] [Google Scholar]
  6. Fedor M. J., Uhlenbeck O. C. Kinetics of intermolecular cleavage by hammerhead ribozymes. Biochemistry. 1992 Dec 8;31(48):12042–12054. doi: 10.1021/bi00163a012. [DOI] [PubMed] [Google Scholar]
  7. Giebel L. B., Cass R. T., Milligan D. L., Young D. C., Arze R., Johnson C. R. Screening of cyclic peptide phage libraries identifies ligands that bind streptavidin with high affinities. Biochemistry. 1995 Nov 28;34(47):15430–15435. doi: 10.1021/bi00047a006. [DOI] [PubMed] [Google Scholar]
  8. Gold L., Polisky B., Uhlenbeck O., Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem. 1995;64:763–797. doi: 10.1146/annurev.bi.64.070195.003555. [DOI] [PubMed] [Google Scholar]
  9. Hamada M., Kuwabara T., Warashina M., Nakayama A., Taira K. Specificity of novel allosterically trans- and cis-activated connected maxizymes that are designed to suppress BCR-ABL expression. FEBS Lett. 1999 Nov 12;461(1-2):77–85. doi: 10.1016/s0014-5793(99)01367-8. [DOI] [PubMed] [Google Scholar]
  10. Hermann T., Patel D. J. Adaptive recognition by nucleic acid aptamers. Science. 2000 Feb 4;287(5454):820–825. doi: 10.1126/science.287.5454.820. [DOI] [PubMed] [Google Scholar]
  11. Hertel K. J., Pardi A., Uhlenbeck O. C., Koizumi M., Ohtsuka E., Uesugi S., Cedergren R., Eckstein F., Gerlach W. L., Hodgson R. Numbering system for the hammerhead. Nucleic Acids Res. 1992 Jun 25;20(12):3252–3252. doi: 10.1093/nar/20.12.3252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Katz B. A. Binding to protein targets of peptidic leads discovered by phage display: crystal structures of streptavidin-bound linear and cyclic peptide ligands containing the HPQ sequence. Biochemistry. 1995 Nov 28;34(47):15421–15429. doi: 10.1021/bi00047a005. [DOI] [PubMed] [Google Scholar]
  13. Knapp G. Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol. 1989;180:192–212. doi: 10.1016/0076-6879(89)80102-8. [DOI] [PubMed] [Google Scholar]
  14. Koizumi M., Soukup G. A., Kerr J. N., Breaker R. R. Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat Struct Biol. 1999 Nov;6(11):1062–1071. doi: 10.1038/14947. [DOI] [PubMed] [Google Scholar]
  15. Koizumi M., Soukup G. A., Kerr J. N., Breaker R. R. Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat Struct Biol. 1999 Nov;6(11):1062–1071. doi: 10.1038/14947. [DOI] [PubMed] [Google Scholar]
  16. Komatsu Y., Yamashita S., Kazama N., Nobuoka K., Ohtsuka E. Construction of new ribozymes requiring short regulator oligonucleotides as a cofactor. J Mol Biol. 2000 Jun 23;299(5):1231–1243. doi: 10.1006/jmbi.2000.3825. [DOI] [PubMed] [Google Scholar]
  17. Kuwabara T., Warashina M., Tanabe T., Tani K., Asano S., Taira K. A novel allosterically trans-activated ribozyme, the maxizyme, with exceptional specificity in vitro and in vivo. Mol Cell. 1998 Nov;2(5):617–627. doi: 10.1016/s1097-2765(00)80160-4. [DOI] [PubMed] [Google Scholar]
  18. Long D. M., Uhlenbeck O. C. Kinetic characterization of intramolecular and intermolecular hammerhead RNAs with stem II deletions. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6977–6981. doi: 10.1073/pnas.91.15.6977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Osborne Scott E., Ellington Andrew D. Nucleic Acid Selection and the Challenge of Combinatorial Chemistry. Chem Rev. 1997 Apr 1;97(2):349–370. doi: 10.1021/cr960009c. [DOI] [PubMed] [Google Scholar]
  20. Patel D. J., Suri A. K., Jiang F., Jiang L., Fan P., Kumar R. A., Nonin S. Structure, recognition and adaptive binding in RNA aptamer complexes. J Mol Biol. 1997 Oct 10;272(5):645–664. doi: 10.1006/jmbi.1997.1281. [DOI] [PubMed] [Google Scholar]
  21. Pley H. W., Flaherty K. M., McKay D. B. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994 Nov 3;372(6501):68–74. doi: 10.1038/372068a0. [DOI] [PubMed] [Google Scholar]
  22. Porta H., Lizardi P. M. An allosteric hammerhead ribozyme. Biotechnology (N Y) 1995 Feb;13(2):161–164. doi: 10.1038/nbt0295-161. [DOI] [PubMed] [Google Scholar]
  23. Robertson M. P., Ellington A. D. Design and optimization of effector-activated ribozyme ligases. Nucleic Acids Res. 2000 Apr 15;28(8):1751–1759. doi: 10.1093/nar/28.8.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Robertson M. P., Ellington A. D. In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat Biotechnol. 1999 Jan;17(1):62–66. doi: 10.1038/5236. [DOI] [PubMed] [Google Scholar]
  25. Ruffner D. E., Stormo G. D., Uhlenbeck O. C. Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry. 1990 Nov 27;29(47):10695–10702. doi: 10.1021/bi00499a018. [DOI] [PubMed] [Google Scholar]
  26. Serra M. J., Turner D. H. Predicting thermodynamic properties of RNA. Methods Enzymol. 1995;259:242–261. doi: 10.1016/0076-6879(95)59047-1. [DOI] [PubMed] [Google Scholar]
  27. Soukup G. A., Breaker R. R. Allosteric nucleic acid catalysts. Curr Opin Struct Biol. 2000 Jun;10(3):318–325. doi: 10.1016/s0959-440x(00)00090-7. [DOI] [PubMed] [Google Scholar]
  28. Soukup G. A., Breaker R. R. Design of allosteric hammerhead ribozymes activated by ligand-induced structure stabilization. Structure. 1999 Jul 15;7(7):783–791. doi: 10.1016/s0969-2126(99)80102-6. [DOI] [PubMed] [Google Scholar]
  29. Soukup G. A., Breaker R. R. Engineering precision RNA molecular switches. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3584–3589. doi: 10.1073/pnas.96.7.3584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Soukup G. A., Breaker R. R. Nucleic acid molecular switches. Trends Biotechnol. 1999 Dec;17(12):469–476. doi: 10.1016/s0167-7799(99)01383-9. [DOI] [PubMed] [Google Scholar]
  31. Soukup G. A., Breaker R. R. Relationship between internucleotide linkage geometry and the stability of RNA. RNA. 1999 Oct;5(10):1308–1325. doi: 10.1017/s1355838299990891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Soukup G. A., Emilsson G. A., Breaker R. R. Altering molecular recognition of RNA aptamers by allosteric selection. J Mol Biol. 2000 May 12;298(4):623–632. doi: 10.1006/jmbi.2000.3704. [DOI] [PubMed] [Google Scholar]
  33. Sussman D., Nix J. C., Wilson C. The structural basis for molecular recognition by the vitamin B 12 RNA aptamer. Nat Struct Biol. 2000 Jan;7(1):53–57. doi: 10.1038/71253. [DOI] [PubMed] [Google Scholar]
  34. Tanabe T., Takata I., Kuwabara T., Warashina M., Kawasaki H., Tani K., Ohta S., Asano S., Taira K. Maxizymes, novel allosterically controllable ribozymes, can be designed to cleave various substrates. Biomacromolecules. 2000 Spring;1(1):108–117. doi: 10.1021/bm990009x. [DOI] [PubMed] [Google Scholar]
  35. Tang J., Breaker R. R. Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection. RNA. 1997 Aug;3(8):914–925. [PMC free article] [PubMed] [Google Scholar]
  36. Tang J., Breaker R. R. Rational design of allosteric ribozymes. Chem Biol. 1997 Jun;4(6):453–459. doi: 10.1016/s1074-5521(97)90197-6. [DOI] [PubMed] [Google Scholar]
  37. Tuschl T., Eckstein F. Hammerhead ribozymes: importance of stem-loop II for activity. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6991–6994. doi: 10.1073/pnas.90.15.6991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Van Duyne G. D., Standaert R. F., Karplus P. A., Schreiber S. L., Clardy J. Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex. Science. 1991 May 10;252(5007):839–842. doi: 10.1126/science.1709302. [DOI] [PubMed] [Google Scholar]
  39. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES