Skip to main content
RNA logoLink to RNA
. 2001 Apr;7(4):537–545. doi: 10.1017/s1355838201002461

Comparison of the hammerhead cleavage reactions stimulated by monovalent and divalent cations.

J L O'Rear 1, S Wang 1, A L Feig 1, L Beigelman 1, O C Uhlenbeck 1, D Herschlag 1
PMCID: PMC1370107  PMID: 11345432

Abstract

Although the hammerhead reaction proceeds most efficiently in divalent cations, cleavage in 4 M LiCl is only approximately 10-fold slower than under standard conditions of 10 mM MgCl2 (Murray et al., Chem Biol, 1998, 5:587-595; Curtis & Bartel, RNA, 2001, this issue, pp. 546-552). To determine if the catalytic mechanism with high concentrations of monovalent cations is similar to that with divalent cations, we compared the activities of a series of modified hammerhead ribozymes in the two ionic conditions. Nearly all of the modifications have similar deleterious effects under both reaction conditions, suggesting that the hammerhead adopts the same general catalytic structure with both monovalent and divalent cations. However, modification of three ligands previously implicated in the binding of a functional divalent metal ion have substantially smaller effects on the cleavage rate in Li+ than in Mg2+. This result suggests that an interaction analogous to the interaction made by this divalent metal ion is absent in the monovalent reaction. Although the contribution of this divalent metal ion to the overall reaction rate is relatively modest, its presence is needed to achieve the full catalytic rate. The role of this ion appears to be in facilitating formation of the active structure, and any direct chemical role of metal ions in hammerhead catalysis is small.

Full Text

The Full Text of this article is available as a PDF (386.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baidya N., Ammons G. E., Matulic-Adamic J., Karpeisky A. M., Beigelman L., Uhlenbeck O. C. Functional groups on the cleavage site pyrimidine nucleotide are required for stabilization of the hammerhead transition state. RNA. 1997 Oct;3(10):1135–1142. [PMC free article] [PubMed] [Google Scholar]
  2. Baidya N., Uhlenbeck O. C. A kinetic and thermodynamic analysis of cleavage site mutations in the hammerhead ribozyme. Biochemistry. 1997 Feb 4;36(5):1108–1114. doi: 10.1021/bi962165j. [DOI] [PubMed] [Google Scholar]
  3. Ban N., Nissen P., Hansen J., Moore P. B., Steitz T. A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science. 2000 Aug 11;289(5481):905–920. doi: 10.1126/science.289.5481.905. [DOI] [PubMed] [Google Scholar]
  4. Clouet-d'Orval B., Uhlenbeck O. C. Hammerhead ribozymes with a faster cleavage rate. Biochemistry. 1997 Jul 29;36(30):9087–9092. doi: 10.1021/bi9710941. [DOI] [PubMed] [Google Scholar]
  5. Curtis E. A., Bartel D. P. The hammerhead cleavage reaction in monovalent cations. RNA. 2001 Apr;7(4):546–552. doi: 10.1017/s1355838201002357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dahm S. C., Derrick W. B., Uhlenbeck O. C. Evidence for the role of solvated metal hydroxide in the hammerhead cleavage mechanism. Biochemistry. 1993 Dec 7;32(48):13040–13045. doi: 10.1021/bi00211a013. [DOI] [PubMed] [Google Scholar]
  7. Dahm S. C., Uhlenbeck O. C. Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry. 1991 Oct 1;30(39):9464–9469. doi: 10.1021/bi00103a011. [DOI] [PubMed] [Google Scholar]
  8. Davanloo P., Rosenberg A. H., Dunn J. J., Studier F. W. Cloning and expression of the gene for bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2035–2039. doi: 10.1073/pnas.81.7.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Derrick W. B., Greef C. H., Caruthers M. H., Uhlenbeck O. C. Hammerhead cleavage of the phosphorodithioate linkage. Biochemistry. 2000 Apr 25;39(16):4947–4954. doi: 10.1021/bi000146a. [DOI] [PubMed] [Google Scholar]
  10. Draper D. E. Strategies for RNA folding. Trends Biochem Sci. 1996 Apr;21(4):145–149. [PubMed] [Google Scholar]
  11. Fedor M. J. Structure and function of the hairpin ribozyme. J Mol Biol. 2000 Mar 24;297(2):269–291. doi: 10.1006/jmbi.2000.3560. [DOI] [PubMed] [Google Scholar]
  12. Fedor M. J., Uhlenbeck O. C. Kinetics of intermolecular cleavage by hammerhead ribozymes. Biochemistry. 1992 Dec 8;31(48):12042–12054. doi: 10.1021/bi00163a012. [DOI] [PubMed] [Google Scholar]
  13. Ferré-D'Amaré A. R., Zhou K., Doudna J. A. Crystal structure of a hepatitis delta virus ribozyme. Nature. 1998 Oct 8;395(6702):567–574. doi: 10.1038/26912. [DOI] [PubMed] [Google Scholar]
  14. Forster A. C., Symons R. H. Self-cleavage of plus and minus RNAs of a virusoid and a structural model for the active sites. Cell. 1987 Apr 24;49(2):211–220. doi: 10.1016/0092-8674(87)90562-9. [DOI] [PubMed] [Google Scholar]
  15. Forster A. C., Symons R. H. Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell. 1987 Jul 3;50(1):9–16. doi: 10.1016/0092-8674(87)90657-x. [DOI] [PubMed] [Google Scholar]
  16. Frey P. A., Sammons R. D. Bond order and charge localization in nucleoside phosphorothioates. Science. 1985 May 3;228(4699):541–545. doi: 10.1126/science.2984773. [DOI] [PubMed] [Google Scholar]
  17. Geyer C. R., Sen D. Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme. Chem Biol. 1997 Aug;4(8):579–593. doi: 10.1016/s1074-5521(97)90244-1. [DOI] [PubMed] [Google Scholar]
  18. Hampel A., Cowan J. A. A unique mechanism for RNA catalysis: the role of metal cofactors in hairpin ribozyme cleavage. Chem Biol. 1997 Jul;4(7):513–517. doi: 10.1016/s1074-5521(97)90323-9. [DOI] [PubMed] [Google Scholar]
  19. Hertel K. J., Herschlag D., Uhlenbeck O. C. A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry. 1994 Mar 22;33(11):3374–3385. doi: 10.1021/bi00177a031. [DOI] [PubMed] [Google Scholar]
  20. Hertel K. J., Pardi A., Uhlenbeck O. C., Koizumi M., Ohtsuka E., Uesugi S., Cedergren R., Eckstein F., Gerlach W. L., Hodgson R. Numbering system for the hammerhead. Nucleic Acids Res. 1992 Jun 25;20(12):3252–3252. doi: 10.1093/nar/20.12.3252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hertel K. J., Stage-Zimmermann T. K., Ammons G., Uhlenbeck O. C. Thermodynamic dissection of the substrate-ribozyme interaction in the hammerhead ribozyme. Biochemistry. 1998 Dec 1;37(48):16983–16988. doi: 10.1021/bi981740b. [DOI] [PubMed] [Google Scholar]
  22. Jayasena V. K., Gold L. In vitro selection of self-cleaving RNAs with a low pH optimum. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10612–10617. doi: 10.1073/pnas.94.20.10612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Knöll R., Bald R., Fürste J. P. Complete identification of nonbridging phosphate oxygens involved in hammerhead cleavage. RNA. 1997 Feb;3(2):132–140. [PMC free article] [PubMed] [Google Scholar]
  24. Koizumi M., Ohtsuka E. Effects of phosphorothioate and 2-amino groups in hammerhead ribozymes on cleavage rates and Mg2+ binding. Biochemistry. 1991 May 28;30(21):5145–5150. doi: 10.1021/bi00235a005. [DOI] [PubMed] [Google Scholar]
  25. Lott W. B., Pontius B. W., von Hippel P. H. A two-metal ion mechanism operates in the hammerhead ribozyme-mediated cleavage of an RNA substrate. Proc Natl Acad Sci U S A. 1998 Jan 20;95(2):542–547. doi: 10.1073/pnas.95.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McKay D. B. Structure and function of the hammerhead ribozyme: an unfinished story. RNA. 1996 May;2(5):395–403. [PMC free article] [PubMed] [Google Scholar]
  27. Milligan J. F., Groebe D. R., Witherell G. W., Uhlenbeck O. C. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 1987 Nov 11;15(21):8783–8798. doi: 10.1093/nar/15.21.8783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Murray J. B., Seyhan A. A., Walter N. G., Burke J. M., Scott W. G. The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem Biol. 1998 Oct;5(10):587–595. doi: 10.1016/s1074-5521(98)90116-8. [DOI] [PubMed] [Google Scholar]
  29. Murray J. B., Szöke H., Szöke A., Scott W. G. Capture and visualization of a catalytic RNA enzyme-product complex using crystal lattice trapping and X-ray holographic reconstruction. Mol Cell. 2000 Feb;5(2):279–287. doi: 10.1016/s1097-2765(00)80423-2. [DOI] [PubMed] [Google Scholar]
  30. Murray J. B., Terwey D. P., Maloney L., Karpeisky A., Usman N., Beigelman L., Scott W. G. The structural basis of hammerhead ribozyme self-cleavage. Cell. 1998 Mar 6;92(5):665–673. doi: 10.1016/s0092-8674(00)81134-4. [DOI] [PubMed] [Google Scholar]
  31. Nakano S., Chadalavada D. M., Bevilacqua P. C. General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science. 2000 Feb 25;287(5457):1493–1497. doi: 10.1126/science.287.5457.1493. [DOI] [PubMed] [Google Scholar]
  32. Narlikar G. J., Herschlag D. Mechanistic aspects of enzymatic catalysis: lessons from comparison of RNA and protein enzymes. Annu Rev Biochem. 1997;66:19–59. doi: 10.1146/annurev.biochem.66.1.19. [DOI] [PubMed] [Google Scholar]
  33. Nesbitt S., Hegg L. A., Fedor M. J. An unusual pH-independent and metal-ion-independent mechanism for hairpin ribozyme catalysis. Chem Biol. 1997 Aug;4(8):619–630. doi: 10.1016/s1074-5521(97)90247-7. [DOI] [PubMed] [Google Scholar]
  34. Nissen P., Hansen J., Ban N., Moore P. B., Steitz T. A. The structural basis of ribosome activity in peptide bond synthesis. Science. 2000 Aug 11;289(5481):920–930. doi: 10.1126/science.289.5481.920. [DOI] [PubMed] [Google Scholar]
  35. Peracchi A., Beigelman L., Scott E. C., Uhlenbeck O. C., Herschlag D. Involvement of a specific metal ion in the transition of the hammerhead ribozyme to its catalytic conformation. J Biol Chem. 1997 Oct 24;272(43):26822–26826. doi: 10.1074/jbc.272.43.26822. [DOI] [PubMed] [Google Scholar]
  36. Peracchi A., Beigelman L., Usman N., Herschlag D. Rescue of abasic hammerhead ribozymes by exogenous addition of specific bases. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11522–11527. doi: 10.1073/pnas.93.21.11522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Peracchi A., Karpeisky A., Maloney L., Beigelman L., Herschlag D. A core folding model for catalysis by the hammerhead ribozyme accounts for its extraordinary sensitivity to abasic mutations. Biochemistry. 1998 Oct 20;37(42):14765–14775. doi: 10.1021/bi980867y. [DOI] [PubMed] [Google Scholar]
  38. Perreault J. P., Labuda D., Usman N., Yang J. H., Cedergren R. Relationship between 2'-hydroxyls and magnesium binding in the hammerhead RNA domain: a model for ribozyme catalysis. Biochemistry. 1991 Apr 23;30(16):4020–4025. doi: 10.1021/bi00230a029. [DOI] [PubMed] [Google Scholar]
  39. Perrotta A. T., Shih I., Been M. D. Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science. 1999 Oct 1;286(5437):123–126. doi: 10.1126/science.286.5437.123. [DOI] [PubMed] [Google Scholar]
  40. Pley H. W., Flaherty K. M., McKay D. B. Three-dimensional structure of a hammerhead ribozyme. Nature. 1994 Nov 3;372(6501):68–74. doi: 10.1038/372068a0. [DOI] [PubMed] [Google Scholar]
  41. Pontius B. W., Lott W. B., von Hippel P. H. Observations on catalysis by hammerhead ribozymes are consistent with a two-divalent-metal-ion mechanism. Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2290–2294. doi: 10.1073/pnas.94.6.2290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Pyle A. M. Role of metal ions in ribozymes. Met Ions Biol Syst. 1996;32:479–520. [PubMed] [Google Scholar]
  43. Roth A., Breaker R. R. An amino acid as a cofactor for a catalytic polynucleotide. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6027–6031. doi: 10.1073/pnas.95.11.6027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Scott E. C., Uhlenbeck O. C. A re-investigation of the thio effect at the hammerhead cleavage site. Nucleic Acids Res. 1999 Jan 15;27(2):479–484. doi: 10.1093/nar/27.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Scott W. G., Finch J. T., Klug A. The crystal structure of an all-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell. 1995 Jun 30;81(7):991–1002. doi: 10.1016/s0092-8674(05)80004-2. [DOI] [PubMed] [Google Scholar]
  46. Scott W. G., Klug A. Ribozymes: structure and mechanism in RNA catalysis. Trends Biochem Sci. 1996 Jun;21(6):220–224. [PubMed] [Google Scholar]
  47. Scott W. G., Murray J. B., Arnold J. R., Stoddard B. L., Klug A. Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme. Science. 1996 Dec 20;274(5295):2065–2069. doi: 10.1126/science.274.5295.2065. [DOI] [PubMed] [Google Scholar]
  48. Slim G., Gait M. J. Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. Nucleic Acids Res. 1991 Mar 25;19(6):1183–1188. doi: 10.1093/nar/19.6.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Smith J. S., Nikonowicz E. P. Phosphorothioate substitution can substantially alter RNA conformation. Biochemistry. 2000 May 16;39(19):5642–5652. doi: 10.1021/bi992712b. [DOI] [PubMed] [Google Scholar]
  50. Stage-Zimmermann T. K., Uhlenbeck O. C. Hammerhead ribozyme kinetics. RNA. 1998 Aug;4(8):875–889. doi: 10.1017/s1355838298980876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Steitz T. A., Steitz J. A. A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6498–6502. doi: 10.1073/pnas.90.14.6498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Suga H., Cowan J. A., Szostak J. W. Unusual metal ion catalysis in an acyl-transferase ribozyme. Biochemistry. 1998 Jul 14;37(28):10118–10125. doi: 10.1021/bi980432a. [DOI] [PubMed] [Google Scholar]
  53. Suzumura K., Warashina M., Yoshinari K., Tanaka Y., Kuwabara T., Orita M., Taira K. Significant change in the structure of a ribozyme upon introduction of a phosphorothioate linkage at P9: NMR reveals a conformational fluctuation in the core region of a hammerhead ribozyme. FEBS Lett. 2000 May 4;473(1):106–112. doi: 10.1016/s0014-5793(00)01499-x. [DOI] [PubMed] [Google Scholar]
  54. Taira K., Uebayasi M., Maeda H., Furukawa K. Energetics of RNA cleavage: implications for the mechanism of action of ribozymes. Protein Eng. 1990 Aug;3(8):691–701. doi: 10.1093/protein/3.8.691. [DOI] [PubMed] [Google Scholar]
  55. Uhlenbeck O. C. A small catalytic oligoribonucleotide. Nature. 1987 Aug 13;328(6131):596–600. doi: 10.1038/328596a0. [DOI] [PubMed] [Google Scholar]
  56. Usman N., Cedergren R. Exploiting the chemical synthesis of RNA. Trends Biochem Sci. 1992 Sep;17(9):334–339. doi: 10.1016/0968-0004(92)90306-t. [DOI] [PubMed] [Google Scholar]
  57. Vaish N. K., Kore A. R., Eckstein F. Recent developments in the hammerhead ribozyme field. Nucleic Acids Res. 1998 Dec 1;26(23):5237–5242. doi: 10.1093/nar/26.23.5237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Wang S., Karbstein K., Peracchi A., Beigelman L., Herschlag D. Identification of the hammerhead ribozyme metal ion binding site responsible for rescue of the deleterious effect of a cleavage site phosphorothioate. Biochemistry. 1999 Oct 26;38(43):14363–14378. doi: 10.1021/bi9913202. [DOI] [PubMed] [Google Scholar]
  59. Wincott F., DiRenzo A., Shaffer C., Grimm S., Tracz D., Workman C., Sweedler D., Gonzalez C., Scaringe S., Usman N. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucleic Acids Res. 1995 Jul 25;23(14):2677–2684. doi: 10.1093/nar/23.14.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Yarus M. How many catalytic RNAs? Ions and the Cheshire cat conjecture. FASEB J. 1993 Jan;7(1):31–39. doi: 10.1096/fasebj.7.1.8422972. [DOI] [PubMed] [Google Scholar]
  61. Yoshinari K., Taira K. A further investigation and reappraisal of the thio effect in the cleavage reaction catalyzed by a hammerhead ribozyme. Nucleic Acids Res. 2000 Apr 15;28(8):1730–1742. doi: 10.1093/nar/28.8.1730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Young K. J., Gill F., Grasby J. A. Metal ions play a passive role in the hairpin ribozyme catalysed reaction. Nucleic Acids Res. 1997 Oct 1;25(19):3760–3766. doi: 10.1093/nar/25.19.3760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Zhou De-Min, Taira Kazunari. The Hydrolysis of RNA: From Theoretical Calculations to the Hammerhead Ribozyme-Mediated Cleavage of RNA. Chem Rev. 1998 May 7;98(3):991–1026. doi: 10.1021/cr9604292. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES