Skip to main content
RNA logoLink to RNA
. 2001 Apr;7(4):565–575. doi: 10.1017/s1355838201001996

An essential protein-binding domain of nuclear RNase P RNA.

W A Ziehler 1, J Morris 1, F H Scott 1, C Millikin 1, D R Engelke 1
PMCID: PMC1370110  PMID: 11345435

Abstract

Eukaryotic RNase P and RNase MRP are endoribonucleases composed of RNA and protein subunits. The RNA subunits of each enzyme share substantial secondary structural features, and most of the protein subunits are shared between the two. One of the conserved RNA subdomains, designated P3, has previously been shown to be required for nucleolar localization. Phylogenetic sequence analysis suggests that the P3 domain interacts with one of the proteins common to RNase P and RNase MRP, a conclusion strengthened by an earlier observation that the essential domain can be interchanged between the two enzymes. To examine possible functions of the P3 domain, four conserved nucleotides in the P3 domain of Saccharomyces cerevisiae RNase P RNA (RPR1) were randomized to create a library of all possible sequence combinations at those positions. Selection of functional genes in vivo identified permissible variations, and viable clones that caused yeast to exhibit conditional growth phenotypes were tested for defects in RNase P RNA and tRNA biosynthesis. Under nonpermissive conditions, the mutants had reduced maturation of the RPR1 RNA precursor, an expected phenotype in cases where RNase P holoenzyme assembly is defective. This loss of RPR1 RNA maturation coincided, as expected, with a loss of pre-tRNA maturation characteristic of RNase P defects. To test whether mutations at the conserved positions inhibited interactions with a particular protein, specific binding of the individual protein subunits to the RNA subunit was tested in yeast using the three-hybrid system. Pop1p, the largest subunit shared by RNases P and MRP, bound specifically to RPR1 RNA and the isolated P3 domain, and this binding was eliminated by mutations at the conserved P3 residues. These results indicate that Pop1p interacts with the P3 domain common to RNases P and MRP, and that this interaction is critical in the maturation of RNase P holoenzyme.

Full Text

The Full Text of this article is available as a PDF (859.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman S., Baer M. F., Bartkiewicz M., Gold H., Guerrier-Takada C., Kirsebom L. A., Lumelsky N., Peck K. Catalysis by the RNA subunit of RNase P--a minireview. Gene. 1989 Oct 15;82(1):63–64. doi: 10.1016/0378-1119(89)90030-9. [DOI] [PubMed] [Google Scholar]
  2. Bertrand E., Houser-Scott F., Kendall A., Singer R. H., Engelke D. R. Nucleolar localization of early tRNA processing. Genes Dev. 1998 Aug 15;12(16):2463–2468. doi: 10.1101/gad.12.16.2463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chamberlain J. R., Lee Y., Lane W. S., Engelke D. R. Purification and characterization of the nuclear RNase P holoenzyme complex reveals extensive subunit overlap with RNase MRP. Genes Dev. 1998 Jun 1;12(11):1678–1690. doi: 10.1101/gad.12.11.1678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chamberlain J. R., Pagán-Ramos, Kindelberger D. W., Engelke D. R. An RNase P RNA subunit mutation affects ribosomal RNA processing. Nucleic Acids Res. 1996 Aug 15;24(16):3158–3166. doi: 10.1093/nar/24.16.3158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chamberlain J. R., Tranguch A. J., Pagán-Ramos E., Engelke D. R. Eukaryotic nuclear RNase P: structures and functions. Prog Nucleic Acid Res Mol Biol. 1996;55:87–119. doi: 10.1016/s0079-6603(08)60190-7. [DOI] [PubMed] [Google Scholar]
  6. Chu S., Zengel J. M., Lindahl L. A novel protein shared by RNase MRP and RNase P. RNA. 1997 Apr;3(4):382–391. [PMC free article] [PubMed] [Google Scholar]
  7. Dichtl B., Tollervey D. Pop3p is essential for the activity of the RNase MRP and RNase P ribonucleoproteins in vivo. EMBO J. 1997 Jan 15;16(2):417–429. doi: 10.1093/emboj/16.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eder P. S., Kekuda R., Stolc V., Altman S. Characterization of two scleroderma autoimmune antigens that copurify with human ribonuclease P. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1101–1106. doi: 10.1073/pnas.94.4.1101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Forster A. C., Altman S. Similar cage-shaped structures for the RNA components of all ribonuclease P and ribonuclease MRP enzymes. Cell. 1990 Aug 10;62(3):407–409. doi: 10.1016/0092-8674(90)90003-w. [DOI] [PubMed] [Google Scholar]
  10. Gold H. A., Topper J. N., Clayton D. A., Craft J. The RNA processing enzyme RNase MRP is identical to the Th RNP and related to RNase P. Science. 1989 Sep 22;245(4924):1377–1380. doi: 10.1126/science.2476849. [DOI] [PubMed] [Google Scholar]
  11. Jacobson M. R., Cao L. G., Taneja K., Singer R. H., Wang Y. L., Pederson T. Nuclear domains of the RNA subunit of RNase P. J Cell Sci. 1997 Apr;110(Pt 7):829–837. doi: 10.1242/jcs.110.7.829. [DOI] [PubMed] [Google Scholar]
  12. Jacobson M. R., Cao L. G., Wang Y. L., Pederson T. Dynamic localization of RNase MRP RNA in the nucleolus observed by fluorescent RNA cytochemistry in living cells. J Cell Biol. 1995 Dec;131(6 Pt 2):1649–1658. doi: 10.1083/jcb.131.6.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Krupp G., Cherayil B., Frendewey D., Nishikawa S., Söll D. Two RNA species co-purify with RNase P from the fission yeast Schizosaccharomyces pombe. EMBO J. 1986 Jul;5(7):1697–1703. doi: 10.1002/j.1460-2075.1986.tb04413.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Köhrer K., Domdey H. Preparation of high molecular weight RNA. Methods Enzymol. 1991;194:398–405. doi: 10.1016/0076-6879(91)94030-g. [DOI] [PubMed] [Google Scholar]
  15. Lee B., Matera A. G., Ward D. C., Craft J. Association of RNase mitochondrial RNA processing enzyme with ribonuclease P in higher ordered structures in the nucleolus: a possible coordinate role in ribosome biogenesis. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11471–11476. doi: 10.1073/pnas.93.21.11471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lee J. Y., Evans C. F., Engelke D. R. Expression of RNase P RNA in Saccharomyces cerevisiae is controlled by an unusual RNA polymerase III promoter. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):6986–6990. doi: 10.1073/pnas.88.16.6986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lee J. Y., Rohlman C. E., Molony L. A., Engelke D. R. Characterization of RPR1, an essential gene encoding the RNA component of Saccharomyces cerevisiae nuclear RNase P. Mol Cell Biol. 1991 Feb;11(2):721–730. doi: 10.1128/mcb.11.2.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lindahl L., Fretz S., Epps N., Zengel J. M. Functional equivalence of hairpins in the RNA subunits of RNase MRP and RNase P in Saccharomyces cerevisiae. RNA. 2000 May;6(5):653–658. doi: 10.1017/s1355838200992574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liu M. H., Yuan Y., Reddy R. Human RNaseP RNA and nucleolar 7-2 RNA share conserved 'To' antigen-binding domains. Mol Cell Biochem. 1994 Jan 12;130(1):75–82. doi: 10.1007/BF01084270. [DOI] [PubMed] [Google Scholar]
  20. Lygerou Z., Allmang C., Tollervey D., Séraphin B. Accurate processing of a eukaryotic precursor ribosomal RNA by ribonuclease MRP in vitro. Science. 1996 Apr 12;272(5259):268–270. doi: 10.1126/science.272.5259.268. [DOI] [PubMed] [Google Scholar]
  21. Lygerou Z., Mitchell P., Petfalski E., Séraphin B., Tollervey D. The POP1 gene encodes a protein component common to the RNase MRP and RNase P ribonucleoproteins. Genes Dev. 1994 Jun 15;8(12):1423–1433. doi: 10.1101/gad.8.12.1423. [DOI] [PubMed] [Google Scholar]
  22. Matera A. G., Frey M. R., Margelot K., Wolin S. L. A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J Cell Biol. 1995 Jun;129(5):1181–1193. doi: 10.1083/jcb.129.5.1181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Morrissey J. P., Tollervey D. Birth of the snoRNPs: the evolution of RNase MRP and the eukaryotic pre-rRNA-processing system. Trends Biochem Sci. 1995 Feb;20(2):78–82. doi: 10.1016/s0968-0004(00)88962-8. [DOI] [PubMed] [Google Scholar]
  24. Morse D. P., Schmidt F. J. Suppression of loss-of-function mutations in Escherichia coli ribonuclease P RNA (M1 RNA) by a specific base-pair disruption. J Mol Biol. 1993 Mar 5;230(1):11–14. doi: 10.1006/jmbi.1993.1120. [DOI] [PubMed] [Google Scholar]
  25. Pace N. R., Smith D. Ribonuclease P: function and variation. J Biol Chem. 1990 Mar 5;265(7):3587–3590. [PubMed] [Google Scholar]
  26. Pagán-Ramos E., Lee Y., Engelke D. R. A conserved RNA motif involved in divalent cation utilization by nuclear RNase P. RNA. 1996 Nov;2(11):1100–1109. [PMC free article] [PubMed] [Google Scholar]
  27. Pagán-Ramos E., Lee Y., Engelke D. R. Mutational analysis of Saccharomyces cerevisiae nuclear RNase P: randomization of universally conserved positions in the RNA subunit. RNA. 1996 May;2(5):441–451. [PMC free article] [PubMed] [Google Scholar]
  28. Pagán-Ramos E., Tranguch A. J., Kindelberger D. W., Engelke D. R. Replacement of the Saccharomyces cerevisiae RPR1 gene with heterologous RNase P RNA genes. Nucleic Acids Res. 1994 Jan 25;22(2):200–207. doi: 10.1093/nar/22.2.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Paluh J. L., Clayton D. A. Schizosaccharomyces pombe RNase MRP RNA is homologous to metazoan RNase MRP RNAs and may provide clues to interrelationships between RNase MRP and RNase P. Yeast. 1995 Oct;11(13):1249–1264. doi: 10.1002/yea.320111305. [DOI] [PubMed] [Google Scholar]
  30. Pitulle C., Garcia-Paris M., Zamudio K. R., Pace N. R. Comparative structure analysis of vertebrate ribonuclease P RNA. Nucleic Acids Res. 1998 Jul 15;26(14):3333–3339. doi: 10.1093/nar/26.14.3333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pluk H., van Eenennaam H., Rutjes S. A., Pruijn G. J., van Venrooij W. J. RNA-protein interactions in the human RNase MRP ribonucleoprotein complex. RNA. 1999 Apr;5(4):512–524. doi: 10.1017/s1355838299982079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Reddy R., Tan E. M., Henning D., Nohga K., Busch H. Detection of a nucleolar 7-2 ribonucleoprotein and a cytoplasmic 8-2 ribonucleoprotein with autoantibodies from patients with scleroderma. J Biol Chem. 1983 Feb 10;258(3):1383–1386. [PubMed] [Google Scholar]
  33. Schmitt M. E., Bennett J. L., Dairaghi D. J., Clayton D. A. Secondary structure of RNase MRP RNA as predicted by phylogenetic comparison. FASEB J. 1993 Jan;7(1):208–213. doi: 10.1096/fasebj.7.1.7678563. [DOI] [PubMed] [Google Scholar]
  34. Schmitt M. E., Clayton D. A. Yeast site-specific ribonucleoprotein endoribonuclease MRP contains an RNA component homologous to mammalian RNase MRP RNA and essential for cell viability. Genes Dev. 1992 Oct;6(10):1975–1985. doi: 10.1101/gad.6.10.1975. [DOI] [PubMed] [Google Scholar]
  35. Schmitt M. E. Molecular modeling of the three-dimensional architecture of the RNA component of yeast RNase MRP. J Mol Biol. 1999 Oct 1;292(4):827–836. doi: 10.1006/jmbi.1999.3116. [DOI] [PubMed] [Google Scholar]
  36. SenGupta D. J., Zhang B., Kraemer B., Pochart P., Fields S., Wickens M. A three-hybrid system to detect RNA-protein interactions in vivo. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8496–8501. doi: 10.1073/pnas.93.16.8496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shadel G. S., Buckenmeyer G. A., Clayton D. A., Schmitt M. E. Mutational analysis of the RNA component of Saccharomyces cerevisiae RNase MRP reveals distinct nuclear phenotypes. Gene. 2000 Mar 7;245(1):175–184. doi: 10.1016/s0378-1119(00)00013-5. [DOI] [PubMed] [Google Scholar]
  38. Stolc V., Altman S. Rpp1, an essential protein subunit of nuclear RNase P required for processing of precursor tRNA and 35S precursor rRNA in Saccharomyces cerevisiae. Genes Dev. 1997 Sep 15;11(18):2414–2425. doi: 10.1101/gad.11.18.2414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tranguch A. J., Engelke D. R. Comparative structural analysis of nuclear RNase P RNAs from yeast. J Biol Chem. 1993 Jul 5;268(19):14045–14055. [PubMed] [Google Scholar]
  40. Tranguch A. J., Kindelberger D. W., Rohlman C. E., Lee J. Y., Engelke D. R. Structure-sensitive RNA footprinting of yeast nuclear ribonuclease P. Biochemistry. 1994 Feb 22;33(7):1778–1787. doi: 10.1021/bi00173a022. [DOI] [PubMed] [Google Scholar]
  41. Yuan Y., Tan E., Reddy R. The 40-kilodalton to autoantigen associates with nucleotides 21 to 64 of human mitochondrial RNA processing/7-2 RNA in vitro. Mol Cell Biol. 1991 Oct;11(10):5266–5274. doi: 10.1128/mcb.11.10.5266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ziehler W. A., Day J. J., Fierke C. A., Engelke D. R. Effects of 5' leader and 3' trailer structures on pre-tRNA processing by nuclear RNase P. Biochemistry. 2000 Aug 15;39(32):9909–9916. doi: 10.1021/bi000603n. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES