Skip to main content
RNA logoLink to RNA
. 2001 Apr;7(4):622–631. doi: 10.1017/s1355838201002217

Evaluation of methylphosphonates as analogs for detecting phosphate contacts in RNA-protein complexes.

D Dertinger 1, O C Uhlenbeck 1
PMCID: PMC1370115  PMID: 11345440

Abstract

The well-studied interaction between the MS2 coat protein and its cognate hairpin was used to test the utility of the methylphosphonate linkage as a phosphate analog. A nitrocellulose filter binding assay was used to measure the change in binding affinity upon introduction of a single methylphosphonate stereoisomer at 13 different positions in the RNA hairpin. Comparing these data to the available crystal structure of the complex shows that all phosphates that are in proximity to the protein show a weaker binding affinity when substituted with a phosphorothioate and control positions show no change. However, in two cases, a methylphosphonate isomer either increased or decreased the binding affinity where no interaction can be detected in the crystal structure. It is possible that methylphosphonate substitutions at these positions affect the structure or flexibility of the hairpin. The utility of the methylphosphonate substitution is compared to phosphate ethylation and phosphorothioate substitution experiments previously performed on the same system.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baidya N., Uhlenbeck O. C. The role of 2'-hydroxyl groups in an RNA-protein interaction. Biochemistry. 1995 Sep 26;34(38):12363–12368. doi: 10.1021/bi00038a033. [DOI] [PubMed] [Google Scholar]
  2. Battiste J. L., Mao H., Rao N. S., Tan R., Muhandiram D. R., Kay L. E., Frankel A. D., Williamson J. R. Alpha helix-RNA major groove recognition in an HIV-1 rev peptide-RRE RNA complex. Science. 1996 Sep 13;273(5281):1547–1551. doi: 10.1126/science.273.5281.1547. [DOI] [PubMed] [Google Scholar]
  3. Benson F. E., Stasiak A., West S. C. Purification and characterization of the human Rad51 protein, an analogue of E. coli RecA. EMBO J. 1994 Dec 1;13(23):5764–5771. doi: 10.1002/j.1460-2075.1994.tb06914.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Botfield M. C., Weiss M. A. Bipartite DNA recognition by the human Oct-2 POU domain: POUs-specific phosphate contacts are analogous to those of bacteriophage lambda repressor. Biochemistry. 1994 Mar 8;33(9):2349–2355. doi: 10.1021/bi00175a001. [DOI] [PubMed] [Google Scholar]
  5. Carey J., Uhlenbeck O. C. Kinetic and thermodynamic characterization of the R17 coat protein-ribonucleic acid interaction. Biochemistry. 1983 May 24;22(11):2610–2615. doi: 10.1021/bi00280a003. [DOI] [PubMed] [Google Scholar]
  6. Dertinger D., Behlen L. S., Uhlenbeck O. C. Using phosphorothioate-substituted RNA to investigate the thermodynamic role of phosphates in a sequence specific RNA-protein complex. Biochemistry. 2000 Jan 11;39(1):55–63. doi: 10.1021/bi991769v. [DOI] [PubMed] [Google Scholar]
  7. Eckstein F. Nucleoside phosphorothioates. Annu Rev Biochem. 1985;54:367–402. doi: 10.1146/annurev.bi.54.070185.002055. [DOI] [PubMed] [Google Scholar]
  8. England T. E., Uhlenbeck O. C. 3'-terminal labelling of RNA with T4 RNA ligase. Nature. 1978 Oct 12;275(5680):560–561. doi: 10.1038/275560a0. [DOI] [PubMed] [Google Scholar]
  9. Fisher B. M., Ha J. H., Raines R. T. Coulombic forces in protein-RNA interactions: binding and cleavage by ribonuclease A and variants at Lys7, Arg10, and Lys66. Biochemistry. 1998 Sep 1;37(35):12121–12132. doi: 10.1021/bi980743l. [DOI] [PubMed] [Google Scholar]
  10. Gott J. M., Pan T., LeCuyer K. A., Uhlenbeck O. C. Using circular permutation analysis to redefine the R17 coat protein binding site. Biochemistry. 1993 Dec 14;32(49):13399–13404. doi: 10.1021/bi00212a004. [DOI] [PubMed] [Google Scholar]
  11. Griffiths A. D., Potter B. V., Eperon I. C. Stereospecificity of nucleases towards phosphorothioate-substituted RNA: stereochemistry of transcription by T7 RNA polymerase. Nucleic Acids Res. 1987 May 26;15(10):4145–4162. doi: 10.1093/nar/15.10.4145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GuhaThakurta D., Draper D. E. Contributions of basic residues to ribosomal protein L11 recognition of RNA. J Mol Biol. 2000 Jan 21;295(3):569–580. doi: 10.1006/jmbi.1999.3372. [DOI] [PubMed] [Google Scholar]
  13. Hamy F., Asseline U., Grasby J., Iwai S., Pritchard C., Slim G., Butler P. J., Karn J., Gait M. J. Hydrogen-bonding contacts in the major groove are required for human immunodeficiency virus type-1 tat protein recognition of TAR RNA. J Mol Biol. 1993 Mar 5;230(1):111–123. doi: 10.1006/jmbi.1993.1129. [DOI] [PubMed] [Google Scholar]
  14. Ivanov V. I., Krylov DYu A-DNA in solution as studied by diverse approaches. Methods Enzymol. 1992;211:111–127. doi: 10.1016/0076-6879(92)11008-7. [DOI] [PubMed] [Google Scholar]
  15. Ivanov V. I., Minchenkova L. E., Schyolkina A. K., Poletayev A. I. Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers. 1973;12(1):89–110. doi: 10.1002/bip.1973.360120109. [DOI] [PubMed] [Google Scholar]
  16. Johansson H. E., Dertinger D., LeCuyer K. A., Behlen L. S., Greef C. H., Uhlenbeck O. C. A thermodynamic analysis of the sequence-specific binding of RNA by bacteriophage MS2 coat protein. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9244–9249. doi: 10.1073/pnas.95.16.9244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kjems J., Calnan B. J., Frankel A. D., Sharp P. A. Specific binding of a basic peptide from HIV-1 Rev. EMBO J. 1992 Mar;11(3):1119–1129. doi: 10.1002/j.1460-2075.1992.tb05152.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kulinska K., Sarzyńska J., Szabo T., Stawiński J. FTIR study on nucleotide analogues. 1. Spectral characterization of dinucleoside methylphosphonates and dinucleoside 5'-methylenephosphonates in solution and in solid phase. J Biomol Struct Dyn. 1997 Aug;15(1):119–128. doi: 10.1080/07391102.1997.10508951. [DOI] [PubMed] [Google Scholar]
  19. Kurpiewski M. R., Koziolkiewicz M., Wilk A., Stec W. J., Jen-Jacobson L. Chiral phosphorothioates as probes of protein interactions with individual DNA phosphoryl oxygens: essential interactions of EcoRI endonuclease with the phosphate at pGAATTC. Biochemistry. 1996 Jul 9;35(27):8846–8854. doi: 10.1021/bi960261e. [DOI] [PubMed] [Google Scholar]
  20. Lago H., Fonseca S. A., Murray J. B., Stonehouse N. J., Stockley P. G. Dissecting the key recognition features of the MS2 bacteriophage translational repression complex. Nucleic Acids Res. 1998 Mar 1;26(5):1337–1344. doi: 10.1093/nar/26.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LeCuyer K. A., Behlen L. S., Uhlenbeck O. C. Mutagenesis of a stacking contact in the MS2 coat protein-RNA complex. EMBO J. 1996 Dec 16;15(24):6847–6853. [PMC free article] [PubMed] [Google Scholar]
  22. LeCuyer K. A., Behlen L. S., Uhlenbeck O. C. Mutants of the bacteriophage MS2 coat protein that alter its cooperative binding to RNA. Biochemistry. 1995 Aug 22;34(33):10600–10606. doi: 10.1021/bi00033a035. [DOI] [PubMed] [Google Scholar]
  23. Lesser D. R., Grajkowski A., Kurpiewski M. R., Koziolkiewicz M., Stec W. J., Jen-Jacobson L. Stereoselective interaction with chiral phosphorothioates at the central DNA kink of the EcoRI endonuclease-GAATTC complex. J Biol Chem. 1992 Dec 5;267(34):24810–24818. [PubMed] [Google Scholar]
  24. Milligan J. F., Uhlenbeck O. C. Determination of RNA-protein contacts using thiophosphate substitutions. Biochemistry. 1989 Apr 4;28(7):2849–2855. doi: 10.1021/bi00433a016. [DOI] [PubMed] [Google Scholar]
  25. Noble S. A., Fisher E. F., Caruthers M. H. Methylphosphonates as probes of protein-nucleic acid interactions. Nucleic Acids Res. 1984 Apr 11;12(7):3387–3404. doi: 10.1093/nar/12.7.3387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Peabody D. S. Role of the coat protein-RNA interaction in the life cycle of bacteriophage MS2. Mol Gen Genet. 1997 Apr 28;254(4):358–364. doi: 10.1007/s004380050427. [DOI] [PubMed] [Google Scholar]
  27. Pritchard C. E., Grasby J. A., Hamy F., Zacharek A. M., Singh M., Karn J., Gait M. J. Methylphosphonate mapping of phosphate contacts critical for RNA recognition by the human immunodeficiency virus tat and rev proteins. Nucleic Acids Res. 1994 Jul 11;22(13):2592–2600. doi: 10.1093/nar/22.13.2592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Romby P., Moras D., Bergdoll M., Dumas P., Vlassov V. V., Westhof E., Ebel J. P., Giegé R. Yeast tRNAAsp tertiary structure in solution and areas of interaction of the tRNA with aspartyl-tRNA synthetase. A comparative study of the yeast phenylalanine system by phosphate alkylation experiments with ethylnitrosourea. J Mol Biol. 1985 Aug 5;184(3):455–471. doi: 10.1016/0022-2836(85)90294-3. [DOI] [PubMed] [Google Scholar]
  29. Schatz D., Leberman R., Eckstein F. Interaction of Escherichia coli tRNA(Ser) with its cognate aminoacyl-tRNA synthetase as determined by footprinting with phosphorothioate-containing tRNA transcripts. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6132–6136. doi: 10.1073/pnas.88.14.6132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Slim G., Gait M. J. Configurationally defined phosphorothioate-containing oligoribonucleotides in the study of the mechanism of cleavage of hammerhead ribozymes. Nucleic Acids Res. 1991 Mar 25;19(6):1183–1188. doi: 10.1093/nar/19.6.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Smith J. S., Nikonowicz E. P. Phosphorothioate substitution can substantially alter RNA conformation. Biochemistry. 2000 May 16;39(19):5642–5652. doi: 10.1021/bi992712b. [DOI] [PubMed] [Google Scholar]
  32. Smith S. A., McLaughlin L. W. Probing contacts to the DNA backbone in the trp repressor-operator sequence-specific protein-nucleic acid complex using diastereomeric methylphosphonate analogues. Biochemistry. 1997 May 20;36(20):6046–6058. doi: 10.1021/bi9700781. [DOI] [PubMed] [Google Scholar]
  33. Strauss-Soukup J. K., Maher L. J., 3rd Role of asymmetric phosphate neutralization in DNA bending by PU.1. J Biol Chem. 1997 Dec 12;272(50):31570–31575. doi: 10.1074/jbc.272.50.31570. [DOI] [PubMed] [Google Scholar]
  34. Strauss-Soukup J. K., Vaghefi M. M., Hogrefe R. I., Maher L. J., 3rd Effects of neutralization pattern and stereochemistry on DNA bending by methylphosphonate substitutions. Biochemistry. 1997 Jul 22;36(29):8692–8698. doi: 10.1021/bi9705467. [DOI] [PubMed] [Google Scholar]
  35. Swarna Latha Y., Yathindra N. Molecular mechanics studies of dinucleoside methylphosphonates: influence of methylphosphonate and its chirality on the phosphodiester conformation. J Biomol Struct Dyn. 1991 Dec;9(3):613–631. doi: 10.1080/07391102.1991.10507940. [DOI] [PubMed] [Google Scholar]
  36. Thorogood H., Grasby J. A., Connolly B. A. Influence of the phosphate backbone on the recognition and hydrolysis of DNA by the EcoRV restriction endonuclease. A study using oligodeoxynucleotide phosphorothioates. J Biol Chem. 1996 Apr 12;271(15):8855–8862. doi: 10.1074/jbc.271.15.8855. [DOI] [PubMed] [Google Scholar]
  37. Valegârd K., Murray J. B., Stonehouse N. J., van den Worm S., Stockley P. G., Liljas L. The three-dimensional structures of two complexes between recombinant MS2 capsids and RNA operator fragments reveal sequence-specific protein-RNA interactions. J Mol Biol. 1997 Aug 1;270(5):724–738. doi: 10.1006/jmbi.1997.1144. [DOI] [PubMed] [Google Scholar]
  38. Valegård K., Liljas L., Fridborg K., Unge T. The three-dimensional structure of the bacterial virus MS2. Nature. 1990 May 3;345(6270):36–41. doi: 10.1038/345036a0. [DOI] [PubMed] [Google Scholar]
  39. Vlassov V. V., Giege R., Ebel J. P. The tertiary structure of yeast tRNAPhe in solution studied by phosphodiester bond modification with ethylnitrosourea. FEBS Lett. 1980 Oct 20;120(1):12–16. doi: 10.1016/0014-5793(80)81034-9. [DOI] [PubMed] [Google Scholar]
  40. Vlassov V. V., Giegé R., Ebel J. P. Tertiary structure of tRNAs in solution monitored by phosphodiester modification with ethylnitrosourea. Eur J Biochem. 1981 Sep;119(1):51–59. doi: 10.1111/j.1432-1033.1981.tb05575.x. [DOI] [PubMed] [Google Scholar]
  41. Vörtler C. S., Fedorova O., Persson T., Kutzke U., Eckstein F. Determination of 2'-hydroxyl and phosphate groups important for aminoacylation of Escherichia coli tRNAAsp: a nucleotide analogue interference study. RNA. 1998 Nov;4(11):1444–1454. doi: 10.1017/s1355838298980967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wincott F., DiRenzo A., Shaffer C., Grimm S., Tracz D., Workman C., Sweedler D., Gonzalez C., Scaringe S., Usman N. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucleic Acids Res. 1995 Jul 25;23(14):2677–2684. doi: 10.1093/nar/23.14.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Witherell G. W., Gott J. M., Uhlenbeck O. C. Specific interaction between RNA phage coat proteins and RNA. Prog Nucleic Acid Res Mol Biol. 1991;40:185–220. doi: 10.1016/s0079-6603(08)60842-9. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES