Skip to main content
RNA logoLink to RNA
. 2001 May;7(5):765–773. doi: 10.1017/s1355838201002539

Development of a tRNA-dependent in vitro translation system.

R J Jackson 1, S Napthine 1, I Brierley 1
PMCID: PMC1370128  PMID: 11350040

Abstract

A method is described for depleting rabbit reticulocyte lysates and wheat germ extracts of endogenous tRNAs by affinity chromatography using a matrix generated by coupling ethanolamine to epoxy-activated Sepharose 6B. Greater than 90% depletion of tRNA is achieved with the result that translation becomes in effect absolutely dependent on added tRNA. This depletion procedure should prove very useful for studying the influence of tRNA concentration, and the spectrum of the tRNA population, on recoding events such as programmed frameshifting and readthrough of termination codons.

Full Text

The Full Text of this article is available as a PDF (787.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahlquist P., Dasgupta R., Kaesberg P. Nucleotide sequence of the brome mosaic virus genome and its implications for viral replication. J Mol Biol. 1984 Feb 5;172(4):369–383. doi: 10.1016/s0022-2836(84)80012-1. [DOI] [PubMed] [Google Scholar]
  2. Brierley I., Boursnell M. E., Binns M. M., Bilimoria B., Blok V. C., Brown T. D., Inglis S. C. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J. 1987 Dec 1;6(12):3779–3785. doi: 10.1002/j.1460-2075.1987.tb02713.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brierley I., Digard P., Inglis S. C. Characterization of an efficient coronavirus ribosomal frameshifting signal: requirement for an RNA pseudoknot. Cell. 1989 May 19;57(4):537–547. doi: 10.1016/0092-8674(89)90124-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brierley I., Jenner A. J., Inglis S. C. Mutational analysis of the "slippery-sequence" component of a coronavirus ribosomal frameshifting signal. J Mol Biol. 1992 Sep 20;227(2):463–479. doi: 10.1016/0022-2836(92)90901-U. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hunt S. L., Kaminski A., Jackson R. J. The influence of viral coding sequences on the efficiency of internal initiation of translation of cardiovirus RNAs. Virology. 1993 Dec;197(2):801–807. doi: 10.1006/viro.1993.1661. [DOI] [PubMed] [Google Scholar]
  6. Hunt T., Herbert P., Campbell E. A., Delidakis C., Jackson R. J. The use of affinity chromatography on 2'5' ADP-sepharose reveals a requirement for NADPH, thioredoxin and thioredoxin reductase for the maintenance of high protein synthesis activity in rabbit reticulocyte lysates. Eur J Biochem. 1983 Mar 15;131(2):303–311. doi: 10.1111/j.1432-1033.1983.tb07263.x. [DOI] [PubMed] [Google Scholar]
  7. Jackson R. J., Campbell E. A., Herbert P., Hunt T. The preparation and properties of gel-filtered rabbit-reticulocyte lysate protein-synthesis systems. Eur J Biochem. 1983 Mar 15;131(2):289–301. doi: 10.1111/j.1432-1033.1983.tb07262.x. [DOI] [PubMed] [Google Scholar]
  8. Jackson R. J., Herbert P., Campbell E. A., Hunt T. The roles of sugar phosphates and thiol-reducing systems in the control of reticulocyte protein synthesis. Eur J Biochem. 1983 Mar 15;131(2):313–324. doi: 10.1111/j.1432-1033.1983.tb07264.x. [DOI] [PubMed] [Google Scholar]
  9. Jackson R. J., Hunt T. Preparation and use of nuclease-treated rabbit reticulocyte lysates for the translation of eukaryotic messenger RNA. Methods Enzymol. 1983;96:50–74. doi: 10.1016/s0076-6879(83)96008-1. [DOI] [PubMed] [Google Scholar]
  10. Le Meur M. A., Gerlinger P., Ebel J. P. Messenger RNA translation in the presence of homologous and heterologous tRNA. Eur J Biochem. 1976 Aug 16;67(2):519–526. doi: 10.1111/j.1432-1033.1976.tb10718.x. [DOI] [PubMed] [Google Scholar]
  11. Marczinke B., Hagervall T., Brierley I. The Q-base of asparaginyl-tRNA is dispensable for efficient -1 ribosomal frameshifting in eukaryotes. J Mol Biol. 2000 Jan 14;295(2):179–191. doi: 10.1006/jmbi.1999.3361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Varshney U., Lee C. P., RajBhandary U. L. Direct analysis of aminoacylation levels of tRNAs in vivo. Application to studying recognition of Escherichia coli initiator tRNA mutants by glutaminyl-tRNA synthetase. J Biol Chem. 1991 Dec 25;266(36):24712–24718. [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES