Skip to main content
RNA logoLink to RNA
. 2001 Jun;7(6):887–895. doi: 10.1017/s1355838201002473

Imaging of single hairpin ribozymes in solution by atomic force microscopy.

M J Fay 1, N G Walter 1, J M Burke 1
PMCID: PMC1370136  PMID: 11421363

Abstract

The hairpin ribozyme is a short endonucleolytic RNA motif isolated from a family of related plant virus satellite RNAs. It consists of two independently folding domains, each comprising two Watson-Crick helices flanking a conserved internal loop. The domains need to physically interact (dock) for catalysis of site-specific cleavage and ligation reactions. Using tapping-mode atomic force microscopy in aqueous buffer solution, we were able to produce high quality images of individual hairpin ribozyme molecules with extended terminal helices. Three RNA constructs with either the essential cleavage site guanosine or a detrimental adenosine substitution and with or without a 6-nt insertion to confer flexibility to the interdomain hinge show structural differences that correlate with their ability to form the active docked conformation. The observed contour lengths and shapes are consistent with previous bulk-solution measurements of the transient electric dichroism decays for the same RNA constructs. The active docked construct appears as an asymmetrically docked conformation that might be an indication of a more complicated docking event than a simple collapse around the interdomain hinge.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonin M., Oberstrass J., Lukacs N., Ewert K., Oesterschulze E., Kassing R., Nellen W. Determination of preferential binding sites for anti-dsRNA antibodies on double-stranded RNA by scanning force microscopy. RNA. 2000 Apr;6(4):563–570. doi: 10.1017/s1355838200992318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bustamante C., Guthold M., Zhu X., Yang G. Facilitated target location on DNA by individual Escherichia coli RNA polymerase molecules observed with the scanning force microscope operating in liquid. J Biol Chem. 1999 Jun 11;274(24):16665–16668. doi: 10.1074/jbc.274.24.16665. [DOI] [PubMed] [Google Scholar]
  3. Bustamante C., Rivetti C., Keller D. J. Scanning force microscopy under aqueous solutions. Curr Opin Struct Biol. 1997 Oct;7(5):709–716. doi: 10.1016/s0959-440x(97)80082-6. [DOI] [PubMed] [Google Scholar]
  4. Bustamante C., Vesenka J., Tang C. L., Rees W., Guthold M., Keller R. Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry. 1992 Jan 14;31(1):22–26. doi: 10.1021/bi00116a005. [DOI] [PubMed] [Google Scholar]
  5. Butcher S. E., Allain F. H., Feigon J. Solution structure of the loop B domain from the hairpin ribozyme. Nat Struct Biol. 1999 Mar;6(3):212–216. doi: 10.1038/6651. [DOI] [PubMed] [Google Scholar]
  6. Butcher S. E., Heckman J. E., Burke J. M. Reconstitution of hairpin ribozyme activity following separation of functional domains. J Biol Chem. 1995 Dec 15;270(50):29648–29651. doi: 10.1074/jbc.270.50.29648. [DOI] [PubMed] [Google Scholar]
  7. Buzayan J. M., Hampel A., Bruening G. Nucleotide sequence and newly formed phosphodiester bond of spontaneously ligated satellite tobacco ringspot virus RNA. Nucleic Acids Res. 1986 Dec 22;14(24):9729–9743. doi: 10.1093/nar/14.24.9729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cai Z., Tinoco I., Jr Solution structure of loop A from the hairpin ribozyme from tobacco ringspot virus satellite. Biochemistry. 1996 May 14;35(19):6026–6036. doi: 10.1021/bi952985g. [DOI] [PubMed] [Google Scholar]
  9. Cunningham P. R., Ofengand J. Use of inorganic pyrophosphatase to improve the yield of in vitro transcription reactions catalyzed by T7 RNA polymerase. Biotechniques. 1990 Dec;9(6):713–714. [PubMed] [Google Scholar]
  10. Drygin Y. F., Bordunova O. A., Gallyamov M. O., Yaminsky I. V. Atomic force microscopy examination of tobacco mosaic virus and virion RNA. FEBS Lett. 1998 Mar 27;425(2):217–221. doi: 10.1016/s0014-5793(98)00232-4. [DOI] [PubMed] [Google Scholar]
  11. Earnshaw D. J., Masquida B., Müller S., Sigurdsson S. T., Eckstein F., Westhof E., Gait M. J. Inter-domain cross-linking and molecular modelling of the hairpin ribozyme. J Mol Biol. 1997 Nov 28;274(2):197–212. doi: 10.1006/jmbi.1997.1405. [DOI] [PubMed] [Google Scholar]
  12. Engel A., Lyubchenko Y., Müller D. Atomic force microscopy: a powerful tool to observe biomolecules at work. Trends Cell Biol. 1999 Feb;9(2):77–80. doi: 10.1016/s0962-8924(98)01415-9. [DOI] [PubMed] [Google Scholar]
  13. Feldstein P. A., Bruening G. Catalytically active geometry in the reversible circularization of 'mini-monomer' RNAs derived from the complementary strand of tobacco ringspot virus satellite RNA. Nucleic Acids Res. 1993 Apr 25;21(8):1991–1998. doi: 10.1093/nar/21.8.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Feldstein P. A., Bruening G. Catalytically active geometry in the reversible circularization of 'mini-monomer' RNAs derived from the complementary strand of tobacco ringspot virus satellite RNA. Nucleic Acids Res. 1993 Apr 25;21(8):1991–1998. doi: 10.1093/nar/21.8.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Frank J., Radermacher M., Penczek P., Zhu J., Li Y., Ladjadj M., Leith A. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol. 1996 Jan-Feb;116(1):190–199. doi: 10.1006/jsbi.1996.0030. [DOI] [PubMed] [Google Scholar]
  16. Fritz J., Anselmetti D., Jarchow J., Fernàndez-Busquets X. Probing single biomolecules with atomic force microscopy. J Struct Biol. 1997 Jul;119(2):165–171. doi: 10.1006/jsbi.1997.3887. [DOI] [PubMed] [Google Scholar]
  17. Hampel A., Tritz R. RNA catalytic properties of the minimum (-)sTRSV sequence. Biochemistry. 1989 Jun 13;28(12):4929–4933. doi: 10.1021/bi00438a002. [DOI] [PubMed] [Google Scholar]
  18. Hampel K. J., Walter N. G., Burke J. M. The solvent-protected core of the hairpin ribozyme-substrate complex. Biochemistry. 1998 Oct 20;37(42):14672–14682. doi: 10.1021/bi981083n. [DOI] [PubMed] [Google Scholar]
  19. Hansma H. G., Bezanilla M., Zenhausern F., Adrian M., Sinsheimer R. L. Atomic force microscopy of DNA in aqueous solutions. Nucleic Acids Res. 1993 Feb 11;21(3):505–512. doi: 10.1093/nar/21.3.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hansma H. G., Golan R., Hsieh W., Daubendiek S. L., Kool E. T. Polymerase activities and RNA structures in the atomic force microscope. J Struct Biol. 1999 Oct;127(3):240–247. doi: 10.1006/jsbi.1999.4170. [DOI] [PubMed] [Google Scholar]
  21. Hansma H. G., Hoh J. H. Biomolecular imaging with the atomic force microscope. Annu Rev Biophys Biomol Struct. 1994;23:115–139. doi: 10.1146/annurev.bb.23.060194.000555. [DOI] [PubMed] [Google Scholar]
  22. Hansma H. G., Kim K. J., Laney D. E., Garcia R. A., Argaman M., Allen M. J., Parsons S. M. Properties of biomolecules measured from atomic force microscope images: a review. J Struct Biol. 1997 Jul;119(2):99–108. doi: 10.1006/jsbi.1997.3855. [DOI] [PubMed] [Google Scholar]
  23. Hansma H. G., Laney D. E. DNA binding to mica correlates with cationic radius: assay by atomic force microscopy. Biophys J. 1996 Apr;70(4):1933–1939. doi: 10.1016/S0006-3495(96)79757-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hansma H. G., Pietrasanta L. Atomic force microscopy and other scanning probe microscopies. Curr Opin Chem Biol. 1998 Oct;2(5):579–584. doi: 10.1016/s1367-5931(98)80086-0. [DOI] [PubMed] [Google Scholar]
  25. Hansma H. G., Revenko I., Kim K., Laney D. E. Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids. Nucleic Acids Res. 1996 Feb 15;24(4):713–720. doi: 10.1093/nar/24.4.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hansma H. G., Sinsheimer R. L., Li M. Q., Hansma P. K. Atomic force microscopy of single- and double-stranded DNA. Nucleic Acids Res. 1992 Jul 25;20(14):3585–3590. doi: 10.1093/nar/20.14.3585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hegg L. A., Fedor M. J. Kinetics and thermodynamics of intermolecular catalysis by hairpin ribozymes. Biochemistry. 1995 Dec 5;34(48):15813–15828. doi: 10.1021/bi00048a027. [DOI] [PubMed] [Google Scholar]
  28. Heinz W. F., Hoh J. H. Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends Biotechnol. 1999 Apr;17(4):143–150. doi: 10.1016/s0167-7799(99)01304-9. [DOI] [PubMed] [Google Scholar]
  29. Houchens C. R., Montigny W., Zeltser L., Dailey L., Gilbert J. M., Heintz N. H. The dhfr oribeta-binding protein RIP60 contains 15 zinc fingers: DNA binding and looping by the central three fingers and an associated proline-rich region. Nucleic Acids Res. 2000 Jan 15;28(2):570–581. doi: 10.1093/nar/28.2.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kasas S., Thomson N. H., Smith B. L., Hansma H. G., Zhu X., Guthold M., Bustamante C., Kool E. T., Kashlev M., Hansma P. K. Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry. 1997 Jan 21;36(3):461–468. doi: 10.1021/bi9624402. [DOI] [PubMed] [Google Scholar]
  31. Komatsu Y., Kanzaki I., Ohtsuka E. Enhanced folding of hairpin ribozymes with replaced domains. Biochemistry. 1996 Jul 30;35(30):9815–9820. doi: 10.1021/bi960627n. [DOI] [PubMed] [Google Scholar]
  32. Lindsay S. M. Biological scanning probe microscopy comes of age. Biophys J. 1994 Dec;67(6):2134–2135. doi: 10.1016/S0006-3495(94)80702-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lyubchenko Y. L., Jacobs B. L., Lindsay S. M. Atomic force microscopy of reovirus dsRNA: a routine technique for length measurements. Nucleic Acids Res. 1992 Aug 11;20(15):3983–3986. doi: 10.1093/nar/20.15.3983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Miles M. Scanning probe microscopy. Probing the future. Science. 1997 Sep 19;277(5333):1845–1847. doi: 10.1126/science.277.5333.1845. [DOI] [PubMed] [Google Scholar]
  35. Milligan J. F., Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 1989;180:51–62. doi: 10.1016/0076-6879(89)80091-6. [DOI] [PubMed] [Google Scholar]
  36. Murchie A. I., Thomson J. B., Walter F., Lilley D. M. Folding of the hairpin ribozyme in its natural conformation achieves close physical proximity of the loops. Mol Cell. 1998 May;1(6):873–881. doi: 10.1016/s1097-2765(00)80086-6. [DOI] [PubMed] [Google Scholar]
  37. Pinard R., Lambert D., Walter N. G., Heckman J. E., Major F., Burke J. M. Structural basis for the guanosine requirement of the hairpin ribozyme. Biochemistry. 1999 Dec 7;38(49):16035–16039. doi: 10.1021/bi992024s. [DOI] [PubMed] [Google Scholar]
  38. Porschke D., Burke J. M., Walter N. G. Global structure and flexibility of hairpin ribozymes with extended terminal helices. J Mol Biol. 1999 Jun 18;289(4):799–813. doi: 10.1006/jmbi.1999.2777. [DOI] [PubMed] [Google Scholar]
  39. Taatjes D. J., Quinn A. S., Lewis M. R., Bovill E. G. Quality assessment of atomic force microscopy probes by scanning electron microscopy: correlation of tip structure with rendered images. Microsc Res Tech. 1999 Mar 1;44(5):312–326. doi: 10.1002/(SICI)1097-0029(19990301)44:5<312::AID-JEMT2>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  40. Thomson N. H., Smith B. L., Almqvist N., Schmitt L., Kashlev M., Kool E. T., Hansma P. K. Oriented, active Escherichia coli RNA polymerase: an atomic force microscope study. Biophys J. 1999 Feb;76(2):1024–1033. doi: 10.1016/S0006-3495(99)77267-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wagner P. Immobilization strategies for biological scanning probe microscopy. FEBS Lett. 1998 Jun 23;430(1-2):112–115. doi: 10.1016/s0014-5793(98)00614-0. [DOI] [PubMed] [Google Scholar]
  42. Walter N. G., Burke J. M., Millar D. P. Stability of hairpin ribozyme tertiary structure is governed by the interdomain junction. Nat Struct Biol. 1999 Jun;6(6):544–549. doi: 10.1038/9316. [DOI] [PubMed] [Google Scholar]
  43. Walter N. G., Hampel K. J., Brown K. M., Burke J. M. Tertiary structure formation in the hairpin ribozyme monitored by fluorescence resonance energy transfer. EMBO J. 1998 Apr 15;17(8):2378–2391. doi: 10.1093/emboj/17.8.2378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Walter NG, Burke JM. The hairpin ribozyme: structure, assembly and catalysis . Curr Opin Chem Biol. 1998 Apr;2(2):303–303. doi: 10.1016/s1367-5931(98)80073-2. [DOI] [PubMed] [Google Scholar]
  45. Yang J., Shao Z. Recent advances in biological atomic force microscopy. Micron. 1995;26(1):35–49. doi: 10.1016/0968-4328(94)00041-n. [DOI] [PubMed] [Google Scholar]
  46. Zhao Z. Y., Wilson T. J., Maxwell K., Lilley D. M. The folding of the hairpin ribozyme: dependence on the loops and the junction. RNA. 2000 Dec;6(12):1833–1846. doi: 10.1017/s1355838200001230. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES