Skip to main content
RNA logoLink to RNA
. 2001 Jul;7(7):942–957. doi: 10.1017/s135583820100214x

Analysis of codon:anticodon interactions within the ribosome provides new insights into codon reading and the genetic code structure.

V I Lim 1, J F Curran 1
PMCID: PMC1370147  PMID: 11453067

Abstract

Although the decoding rules have been largely elucidated, the physical-chemical reasons for the "correctness" of codon:anticodon duplexes have never been clear. In this work, on the basis of the available data, we propose that the correct codon:anticodon duplexes are those whose formation and interaction with the ribosomal decoding center are not accompanied by uncompensated losses of hydrogen and ionic bonds. Other factors such as proofreading, base-base stacking and aminoacyl-tRNA concentration contribute to the efficiency and accuracy of aminoacyl-tRNA selection, and certainly these factors are important; but we suggest that analyses of hydrogen and ionic bonding alone provides a robust first-order approximation of decoding accuracy. Thus our model can simplify predictions about decoding accuracy and error. The model can be refined with data, but is already powerful enough to explain all of the available data on decoding accuracy. Here we predict which duplexes should be considered correct, which duplexes are responsible for virtually all misreading, and we suggest an evolutionary scheme that gave rise to the mixed boxes of the genetic code.

Full Text

The Full Text of this article is available as a PDF (230.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agris P. F. Wobble position modified nucleosides evolved to select transfer RNA codon recognition: a modified-wobble hypothesis. Biochimie. 1991 Nov;73(11):1345–1349. doi: 10.1016/0300-9084(91)90163-u. [DOI] [PubMed] [Google Scholar]
  2. Baeyens K. J., De Bondt H. L., Holbrook S. R. Structure of an RNA double helix including uracil-uracil base pairs in an internal loop. Nat Struct Biol. 1995 Jan;2(1):56–62. doi: 10.1038/nsb0195-56. [DOI] [PubMed] [Google Scholar]
  3. Borén T., Elias P., Samuelsson T., Claesson C., Barciszewska M., Gehrke C. W., Kuo K. C., Lustig F. Undiscriminating codon reading with adenosine in the wobble position. J Mol Biol. 1993 Apr 5;230(3):739–749. doi: 10.1006/jmbi.1993.1196. [DOI] [PubMed] [Google Scholar]
  4. Burkhardt N., Jünemann R., Spahn C. M., Nierhaus K. H. Ribosomal tRNA binding sites: three-site models of translation. Crit Rev Biochem Mol Biol. 1998;33(2):95–149. doi: 10.1080/10409239891204189. [DOI] [PubMed] [Google Scholar]
  5. Calderone T. L., Stevens R. D., Oas T. G. High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli. J Mol Biol. 1996 Oct 4;262(4):407–412. doi: 10.1006/jmbi.1996.0524. [DOI] [PubMed] [Google Scholar]
  6. Carter A. P., Clemons W. M., Brodersen D. E., Morgan-Warren R. J., Wimberly B. T., Ramakrishnan V. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature. 2000 Sep 21;407(6802):340–348. doi: 10.1038/35030019. [DOI] [PubMed] [Google Scholar]
  7. Cate J. H., Yusupov M. M., Yusupova G. Z., Earnest T. N., Noller H. F. X-ray crystal structures of 70S ribosome functional complexes. Science. 1999 Sep 24;285(5436):2095–2104. doi: 10.1126/science.285.5436.2095. [DOI] [PubMed] [Google Scholar]
  8. Conn G. L., Draper D. E., Lattman E. E., Gittis A. G. Crystal structure of a conserved ribosomal protein-RNA complex. Science. 1999 May 14;284(5417):1171–1174. doi: 10.1126/science.284.5417.1171. [DOI] [PubMed] [Google Scholar]
  9. Crick F. H. Codon--anticodon pairing: the wobble hypothesis. J Mol Biol. 1966 Aug;19(2):548–555. doi: 10.1016/s0022-2836(66)80022-0. [DOI] [PubMed] [Google Scholar]
  10. Cruse W. B., Saludjian P., Biala E., Strazewski P., Prangé T., Kennard O. Structure of a mispaired RNA double helix at 1.6-A resolution and implications for the prediction of RNA secondary structure. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4160–4164. doi: 10.1073/pnas.91.10.4160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Curran J. F. Decoding with the A:I wobble pair is inefficient. Nucleic Acids Res. 1995 Feb 25;23(4):683–688. doi: 10.1093/nar/23.4.683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Esberg B., Björk G. R. The methylthio group (ms2) of N6-(4-hydroxyisopentenyl)-2-methylthioadenosine (ms2io6A) present next to the anticodon contributes to the decoding efficiency of the tRNA. J Bacteriol. 1995 Apr;177(8):1967–1975. doi: 10.1128/jb.177.8.1967-1975.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grosjean H. J., de Henau S., Crothers D. M. On the physical basis for ambiguity in genetic coding interactions. Proc Natl Acad Sci U S A. 1978 Feb;75(2):610–614. doi: 10.1073/pnas.75.2.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Holbrook S. R., Cheong C., Tinoco I., Jr, Kim S. H. Crystal structure of an RNA double helix incorporating a track of non-Watson-Crick base pairs. Nature. 1991 Oct 10;353(6344):579–581. doi: 10.1038/353579a0. [DOI] [PubMed] [Google Scholar]
  15. Hopfield J. J. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4135–4139. doi: 10.1073/pnas.71.10.4135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Inagaki Y., Kojima A., Bessho Y., Hori H., Ohama T., Osawa S. Translation of synonymous codons in family boxes by Mycoplasma capricolum tRNAs with unmodified uridine or adenosine at the first anticodon position. J Mol Biol. 1995 Aug 25;251(4):486–492. doi: 10.1006/jmbi.1995.0450. [DOI] [PubMed] [Google Scholar]
  17. Li J., Esberg B., Curran J. F., Björk G. R. Three modified nucleosides present in the anticodon stem and loop influence the in vivo aa-tRNA selection in a tRNA-dependent manner. J Mol Biol. 1997 Aug 15;271(2):209–221. doi: 10.1006/jmbi.1997.1176. [DOI] [PubMed] [Google Scholar]
  18. Lim V. I., Aglyamova G. V. Mutual orientation of tRNAs and interactions between the codon-anticodon duplexes within the ribosome: a stereochemical analysis. Biol Chem. 1998 Jul;379(7):773–781. [PubMed] [Google Scholar]
  19. Lim V. I. Analysis of action of the wobble adenine on codon reading within the ribosome. J Mol Biol. 1995 Sep 22;252(3):277–282. doi: 10.1006/jmbi.1995.0494. [DOI] [PubMed] [Google Scholar]
  20. Lim V. I. Analysis of action of wobble nucleoside modifications on codon-anticodon pairing within the ribosome. J Mol Biol. 1994 Jul 1;240(1):8–19. doi: 10.1006/jmbi.1994.1413. [DOI] [PubMed] [Google Scholar]
  21. Lim V. I. Analysis of interactions between the codon-anticodon duplexes within the ribosome: their role in translation. J Mol Biol. 1997 Mar 14;266(5):877–890. doi: 10.1006/jmbi.1996.0802. [DOI] [PubMed] [Google Scholar]
  22. Lim V. I., Venclovas C. Codon-anticodon pairing. A model for interacting codon-anticodon duplexes located at the ribosomal A- and P-sites. FEBS Lett. 1992 Nov 23;313(2):133–137. doi: 10.1016/0014-5793(92)81429-p. [DOI] [PubMed] [Google Scholar]
  23. Moazed D., Noller H. F. Intermediate states in the movement of transfer RNA in the ribosome. Nature. 1989 Nov 9;342(6246):142–148. doi: 10.1038/342142a0. [DOI] [PubMed] [Google Scholar]
  24. Moras D., Comarmond M. B., Fischer J., Weiss R., Thierry J. C., Ebel J. P., Giegé R. Crystal structure of yeast tRNAAsp. Nature. 1980 Dec 25;288(5792):669–674. doi: 10.1038/288669a0. [DOI] [PubMed] [Google Scholar]
  25. Munz P., Leupold U., Agris P., Kohli J. In vivo decoding rules in Schizosaccharomyces pombe are at variance with in vitro data. Nature. 1981 Nov 12;294(5837):187–188. doi: 10.1038/294187a0. [DOI] [PubMed] [Google Scholar]
  26. Nierhaus K. H. Solution of the ribosome riddle: how the ribosome selects the correct aminoacyl-tRNA out of 41 similar contestants. Mol Microbiol. 1993 Aug;9(4):661–669. doi: 10.1111/j.1365-2958.1993.tb01726.x. [DOI] [PubMed] [Google Scholar]
  27. Ninio J. Kinetic amplification of enzyme discrimination. Biochimie. 1975;57(5):587–595. doi: 10.1016/s0300-9084(75)80139-8. [DOI] [PubMed] [Google Scholar]
  28. Ogle J. M., Brodersen D. E., Clemons W. M., Jr, Tarry M. J., Carter A. P., Ramakrishnan V. Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science. 2001 May 4;292(5518):897–902. doi: 10.1126/science.1060612. [DOI] [PubMed] [Google Scholar]
  29. Osawa S., Jukes T. H., Watanabe K., Muto A. Recent evidence for evolution of the genetic code. Microbiol Rev. 1992 Mar;56(1):229–264. doi: 10.1128/mr.56.1.229-264.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pape T., Wintermeyer W., Rodnina M. V. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome. EMBO J. 1998 Dec 15;17(24):7490–7497. doi: 10.1093/emboj/17.24.7490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pape T., Wintermeyer W., Rodnina M. V. Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome. Nat Struct Biol. 2000 Feb;7(2):104–107. doi: 10.1038/72364. [DOI] [PubMed] [Google Scholar]
  32. Parker J. Errors and alternatives in reading the universal genetic code. Microbiol Rev. 1989 Sep;53(3):273–298. doi: 10.1128/mr.53.3.273-298.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Potapov A. P., Triana-Alonso F. J., Nierhaus K. H. Ribosomal decoding processes at codons in the A or P sites depend differently on 2'-OH groups. J Biol Chem. 1995 Jul 28;270(30):17680–17684. doi: 10.1074/jbc.270.30.17680. [DOI] [PubMed] [Google Scholar]
  34. Qian Q., Curran J. F., Björk G. R. The methyl group of the N6-methyl-N6-threonylcarbamoyladenosine in tRNA of Escherichia coli modestly improves the efficiency of the tRNA. J Bacteriol. 1998 Apr;180(7):1808–1813. doi: 10.1128/jb.180.7.1808-1813.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ramachandran G. N., Sasisekharan V. Conformation of polypeptides and proteins. Adv Protein Chem. 1968;23:283–438. doi: 10.1016/s0065-3233(08)60402-7. [DOI] [PubMed] [Google Scholar]
  36. Robbins D., Hardesty B. Comparison of ribosomal entry and acceptor transfer ribonucleic acid binding sites on Escherichia coli 70S ribosomes. Fluorescence energy transfer measurements from Phe-tRNAPhe to the 3' end of 16S ribonucleic acid. Biochemistry. 1983 Nov 22;22(24):5675–5679. doi: 10.1021/bi00293a034. [DOI] [PubMed] [Google Scholar]
  37. Smith D., Yarus M. tRNA-tRNA interactions within cellular ribosomes. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4397–4401. doi: 10.1073/pnas.86.12.4397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Song H., Mugnier P., Das A. K., Webb H. M., Evans D. R., Tuite M. F., Hemmings B. A., Barford D. The crystal structure of human eukaryotic release factor eRF1--mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell. 2000 Feb 4;100(3):311–321. doi: 10.1016/s0092-8674(00)80667-4. [DOI] [PubMed] [Google Scholar]
  39. Thompson R. C., Karim A. M. The accuracy of protein biosynthesis is limited by its speed: high fidelity selection by ribosomes of aminoacyl-tRNA ternary complexes containing GTP[gamma S]. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4922–4926. doi: 10.1073/pnas.79.16.4922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tomita K., Ueda T., Ishiwa S., Crain P. F., McCloskey J. A., Watanabe K. Codon reading patterns in Drosophila melanogaster mitochondria based on their tRNA sequences: a unique wobble rule in animal mitochondria. Nucleic Acids Res. 1999 Nov 1;27(21):4291–4297. doi: 10.1093/nar/27.21.4291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. VanLoock M. S., Easterwood T. R., Harvey S. C. Major groove binding of the tRNA/mRNA complex to the 16 S ribosomal RNA decoding site. J Mol Biol. 1999 Feb 5;285(5):2069–2078. doi: 10.1006/jmbi.1998.2442. [DOI] [PubMed] [Google Scholar]
  42. Wang Y. X., Huang S., Draper D. E. Structure of a U.U pair within a conserved ribosomal RNA hairpin. Nucleic Acids Res. 1996 Jul 15;24(14):2666–2672. doi: 10.1093/nar/24.14.2666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wimberly B. T., Guymon R., McCutcheon J. P., White S. W., Ramakrishnan V. A detailed view of a ribosomal active site: the structure of the L11-RNA complex. Cell. 1999 May 14;97(4):491–502. doi: 10.1016/s0092-8674(00)80759-x. [DOI] [PubMed] [Google Scholar]
  44. Yarus M., Cline S. W., Wier P., Breeden L., Thompson R. C. Actions of the anticodon arm in translation on the phenotypes of RNA mutants. J Mol Biol. 1986 Nov 20;192(2):235–255. doi: 10.1016/0022-2836(86)90362-1. [DOI] [PubMed] [Google Scholar]
  45. Yarus M., Folley L. S. Sense codons are found in specific contexts. J Mol Biol. 1985 Apr 20;182(4):529–540. doi: 10.1016/0022-2836(85)90239-6. [DOI] [PubMed] [Google Scholar]
  46. Yarus M. Proofreading, NTPases and translation: constraints on accurate biochemistry. Trends Biochem Sci. 1992 Apr;17(4):130–133. doi: 10.1016/0968-0004(92)90320-9. [DOI] [PubMed] [Google Scholar]
  47. Yarus M. Translational efficiency of transfer RNA's: uses of an extended anticodon. Science. 1982 Nov 12;218(4573):646–652. doi: 10.1126/science.6753149. [DOI] [PubMed] [Google Scholar]
  48. Yokoyama S., Watanabe T., Murao K., Ishikura H., Yamaizumi Z., Nishimura S., Miyazawa T. Molecular mechanism of codon recognition by tRNA species with modified uridine in the first position of the anticodon. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4905–4909. doi: 10.1073/pnas.82.15.4905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Yoshizawa S., Fourmy D., Puglisi J. D. Recognition of the codon-anticodon helix by ribosomal RNA. Science. 1999 Sep 10;285(5434):1722–1725. doi: 10.1126/science.285.5434.1722. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES