Skip to main content
RNA logoLink to RNA
. 2001 Jul;7(7):999–1012. doi: 10.1017/s1355838201010342

Determinants on tmRNA for initiating efficient and precise trans-translation: some mutations upstream of the tag-encoding sequence of Escherichia coli tmRNA shift the initiation point of trans-translation in vitro.

S Lee 1, M Ishii 1, T Tadaki 1, A Muto 1, H Himeno 1
PMCID: PMC1370152  PMID: 11453072

Abstract

tmRNA facilitates a novel translation, trans-translation, in which a ribosome can switch between translation of a truncated mRNA and the tmRNA's tag sequence. The mechanism underlying resumption of translation at a definite position is not known. In the present study, the effects of mutations around the initiation point of the tag-encoding sequence of Escherichia coli tmRNA on the efficiency and the frame of tag translation were assessed by measuring the incorporations of several amino acids into in vitro poly (U)-dependent tag-peptide synthesis. One-nucleotide insertions within the tag-encoding region did not shift the frame of tag translation. Any 1-nt deletion within the span of -5 to -1, but not at -6, made the frame of tag translation heterologous. Positions at which a single base substitution caused a decrease of trans-translation efficiency were concentrated within the span of -4 to -2. In particular, an A-4 to C-4 mutation seriously damaged the trans-translation, although this mutant retained normal aminoacylation and ribosome-binding abilities. A possible stem and loop structure around this region was not required for transtranslation. It was concluded that the tag translation requires the primary sequence encompassing -6 to +11, in which the central 3 nt, A-4, G-3, and U-2, play an essential role. It was also found that several base substitutions within the span of -6 to -1 extensively shifted the tag-initiation point by -1.

Full Text

The Full Text of this article is available as a PDF (5.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abo T., Inada T., Ogawa K., Aiba H. SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon. EMBO J. 2000 Jul 17;19(14):3762–3769. doi: 10.1093/emboj/19.14.3762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atkins J. F., Gesteland R. F. A case for trans translation. Nature. 1996 Feb 29;379(6568):769–771. doi: 10.1038/379769a0. [DOI] [PubMed] [Google Scholar]
  3. Barends S., Wower J., Kraal B. Kinetic parameters for tmRNA binding to alanyl-tRNA synthetase and elongation factor Tu from Escherichia coli. Biochemistry. 2000 Mar 14;39(10):2652–2658. doi: 10.1021/bi992439d. [DOI] [PubMed] [Google Scholar]
  4. Felden B., Hanawa K., Atkins J. F., Himeno H., Muto A., Gesteland R. F., McCloskey J. A., Crain P. F. Presence and location of modified nucleotides in Escherichia coli tmRNA: structural mimicry with tRNA acceptor branches. EMBO J. 1998 Jun 1;17(11):3188–3196. doi: 10.1093/emboj/17.11.3188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Felden B., Himeno H., Muto A., Atkins J. F., Gesteland R. F. Structural organization of Escherichia coli tmRNA. Biochimie. 1996;78(11-12):979–983. doi: 10.1016/s0300-9084(97)86720-x. [DOI] [PubMed] [Google Scholar]
  6. Freistroffer D. V., Kwiatkowski M., Buckingham R. H., Ehrenberg M. The accuracy of codon recognition by polypeptide release factors. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2046–2051. doi: 10.1073/pnas.030541097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gottesman S., Roche E., Zhou Y., Sauer R. T. The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 1998 May 1;12(9):1338–1347. doi: 10.1101/gad.12.9.1338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Herman C., Thévenet D., Bouloc P., Walker G. C., D'Ari R. Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). Genes Dev. 1998 May 1;12(9):1348–1355. doi: 10.1101/gad.12.9.1348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hickerson R. P., Watkins-Sims C. D., Burrows C. J., Atkins J. F., Gesteland R. F., Felden B. A nickel complex cleaves uridine in folded RNA structures: application to E. coli tmRNA and related engineered molecules. J Mol Biol. 1998 Jun 12;279(3):577–587. doi: 10.1006/jmbi.1998.1813. [DOI] [PubMed] [Google Scholar]
  10. Himeno H., Sato M., Tadaki T., Fukushima M., Ushida C., Muto A. In vitro trans translation mediated by alanine-charged 10Sa RNA. J Mol Biol. 1997 May 23;268(5):803–808. doi: 10.1006/jmbi.1997.1011. [DOI] [PubMed] [Google Scholar]
  11. Hou Y. M., Schimmel P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature. 1988 May 12;333(6169):140–145. doi: 10.1038/333140a0. [DOI] [PubMed] [Google Scholar]
  12. Huang C., Wolfgang M. C., Withey J., Koomey M., Friedman D. I. Charged tmRNA but not tmRNA-mediated proteolysis is essential for Neisseria gonorrhoeae viability. EMBO J. 2000 Mar 1;19(5):1098–1107. doi: 10.1093/emboj/19.5.1098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Karzai A. W., Roche E. D., Sauer R. T. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat Struct Biol. 2000 Jun;7(6):449–455. doi: 10.1038/75843. [DOI] [PubMed] [Google Scholar]
  14. Karzai A. W., Sauer R. T. Protein factors associated with the SsrA.SmpB tagging and ribosome rescue complex. Proc Natl Acad Sci U S A. 2001 Feb 27;98(6):3040–3044. doi: 10.1073/pnas.051628298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Karzai A. W., Susskind M. M., Sauer R. T. SmpB, a unique RNA-binding protein essential for the peptide-tagging activity of SsrA (tmRNA). EMBO J. 1999 Jul 1;18(13):3793–3799. doi: 10.1093/emboj/18.13.3793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Keiler K. C., Shapiro L., Williams K. P. tmRNAs that encode proteolysis-inducing tags are found in all known bacterial genomes: A two-piece tmRNA functions in Caulobacter. Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7778–7783. doi: 10.1073/pnas.97.14.7778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Keiler K. C., Waller P. R., Sauer R. T. Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. Science. 1996 Feb 16;271(5251):990–993. doi: 10.1126/science.271.5251.990. [DOI] [PubMed] [Google Scholar]
  18. Komine Y., Kitabatake M., Inokuchi H. 10Sa RNA is associated with 70S ribosome particles in Escherichia coli. J Biochem. 1996 Mar;119(3):463–467. doi: 10.1093/oxfordjournals.jbchem.a021264. [DOI] [PubMed] [Google Scholar]
  19. Komine Y., Kitabatake M., Yokogawa T., Nishikawa K., Inokuchi H. A tRNA-like structure is present in 10Sa RNA, a small stable RNA from Escherichia coli. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9223–9227. doi: 10.1073/pnas.91.20.9223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. La Teana A., Brandi A., O'Connor M., Freddi S., Pon C. L. Translation during cold adaptation does not involve mRNA-rRNA base pairing through the downstream box. RNA. 2000 Oct;6(10):1393–1402. doi: 10.1017/s1355838200000595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McClain W. H., Foss K. Changing the identity of a tRNA by introducing a G-U wobble pair near the 3' acceptor end. Science. 1988 May 6;240(4853):793–796. doi: 10.1126/science.2452483. [DOI] [PubMed] [Google Scholar]
  22. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  23. Muto A., Fujihara A., Ito K. I., Matsuno J., Ushida C., Himeno H. Requirement of transfer-messenger RNA for the growth of Bacillus subtilis under stresses. Genes Cells. 2000 Aug;5(8):627–635. doi: 10.1046/j.1365-2443.2000.00356.x. [DOI] [PubMed] [Google Scholar]
  24. Muto A., Sato M., Tadaki T., Fukushima M., Ushida C., Himeno H. Structure and function of 10Sa RNA: trans-translation system. Biochimie. 1996;78(11-12):985–991. doi: 10.1016/s0300-9084(97)86721-1. [DOI] [PubMed] [Google Scholar]
  25. Muto A., Ushida C., Himeno H. A bacterial RNA that functions as both a tRNA and an mRNA. Trends Biochem Sci. 1998 Jan;23(1):25–29. doi: 10.1016/s0968-0004(97)01159-6. [DOI] [PubMed] [Google Scholar]
  26. Nameki N., Chattopadhyay P., Himeno H., Muto A., Kawai G. An NMR and mutational analysis of an RNA pseudoknot of Escherichia coli tmRNA involved in trans-translation. Nucleic Acids Res. 1999 Sep 15;27(18):3667–3675. doi: 10.1093/nar/27.18.3667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nameki N., Felden B., Atkins J. F., Gesteland R. F., Himeno H., Muto A. Functional and structural analysis of a pseudoknot upstream of the tag-encoded sequence in E. coli tmRNA. J Mol Biol. 1999 Feb 26;286(3):733–744. doi: 10.1006/jmbi.1998.2487. [DOI] [PubMed] [Google Scholar]
  28. Nameki N., Tadaki T., Himeno H., Muto A. Three of four pseudoknots in tmRNA are interchangeable and are substitutable with single-stranded RNAs. FEBS Lett. 2000 Mar 31;470(3):345–349. doi: 10.1016/s0014-5793(00)01349-1. [DOI] [PubMed] [Google Scholar]
  29. Nissen P., Kjeldgaard M., Thirup S., Polekhina G., Reshetnikova L., Clark B. F., Nyborg J. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog. Science. 1995 Dec 1;270(5241):1464–1472. doi: 10.1126/science.270.5241.1464. [DOI] [PubMed] [Google Scholar]
  30. O'Connor M., Asai T., Squires C. L., Dahlberg A. E. Enhancement of translation by the downstream box does not involve base pairing of mRNA with the penultimate stem sequence of 16S rRNA. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8973–8978. doi: 10.1073/pnas.96.16.8973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Oba T., Andachi Y., Muto A., Osawa S. CGG: an unassigned or nonsense codon in Mycoplasma capricolum. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):921–925. doi: 10.1073/pnas.88.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Poole E. S., Major L. L., Mannering S. A., Tate W. P. Translational termination in Escherichia coli: three bases following the stop codon crosslink to release factor 2 and affect the decoding efficiency of UGA-containing signals. Nucleic Acids Res. 1998 Feb 15;26(4):954–960. doi: 10.1093/nar/26.4.954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Roche E. D., Sauer R. T. SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J. 1999 Aug 16;18(16):4579–4589. doi: 10.1093/emboj/18.16.4579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rudinger-Thirion J., Giegé R., Felden B. Aminoacylated tmRNA from Escherichia coli interacts with prokaryotic elongation factor Tu. RNA. 1999 Aug;5(8):989–992. doi: 10.1017/s135583829999101x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Shi J. P., Schimmel P. Aminoacylation of alanine minihelices. "Discriminator" base modulates transition state of single turnover reaction. J Biol Chem. 1991 Feb 15;266(5):2705–2708. [PubMed] [Google Scholar]
  36. Sprengart M. L., Fatscher H. P., Fuchs E. The initiation of translation in E. coli: apparent base pairing between the 16srRNA and downstream sequences of the mRNA. Nucleic Acids Res. 1990 Apr 11;18(7):1719–1723. doi: 10.1093/nar/18.7.1719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tadaki T., Fukushima M., Ushida C., Himeno H., Muto A. Interaction of 10Sa RNA with ribosomes in Escherichia coli. FEBS Lett. 1996 Dec 16;399(3):223–226. doi: 10.1016/s0014-5793(96)01330-0. [DOI] [PubMed] [Google Scholar]
  38. Tamura K., Asahara H., Himeno H., Hasegawa T., Shimizu M. Identity elements of Escherichia coli tRNA(Ala). J Mol Recognit. 1991 Jul-Dec;4(4):129–132. doi: 10.1002/jmr.300040404. [DOI] [PubMed] [Google Scholar]
  39. Tu G. F., Reid G. E., Zhang J. G., Moritz R. L., Simpson R. J. C-terminal extension of truncated recombinant proteins in Escherichia coli with a 10Sa RNA decapeptide. J Biol Chem. 1995 Apr 21;270(16):9322–9326. doi: 10.1074/jbc.270.16.9322. [DOI] [PubMed] [Google Scholar]
  40. Ushida C., Himeno H., Watanabe T., Muto A. tRNA-like structures in 10Sa RNAs of Mycoplasma capricolum and Bacillus subtilis. Nucleic Acids Res. 1994 Aug 25;22(16):3392–3396. doi: 10.1093/nar/22.16.3392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Williams K. P., Bartel D. P. Phylogenetic analysis of tmRNA secondary structure. RNA. 1996 Dec;2(12):1306–1310. [PMC free article] [PubMed] [Google Scholar]
  42. Williams K. P., Martindale K. A., Bartel D. P. Resuming translation on tmRNA: a unique mode of determining a reading frame. EMBO J. 1999 Oct 1;18(19):5423–5433. doi: 10.1093/emboj/18.19.5423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Williams K. P. The tmRNA website. Nucleic Acids Res. 2000 Jan 1;28(1):168–168. doi: 10.1093/nar/28.1.168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wower I. K., Zwieb C. W., Guven S. A., Wower J. Binding and cross-linking of tmRNA to ribosomal protein S1, on and off the Escherichia coli ribosome. EMBO J. 2000 Dec 1;19(23):6612–6621. doi: 10.1093/emboj/19.23.6612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zwieb C., Wower I., Wower J. Comparative sequence analysis of tmRNA. Nucleic Acids Res. 1999 May 15;27(10):2063–2071. doi: 10.1093/nar/27.10.2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zwieb C., Wower J. tmRDB (tmRNA database). Nucleic Acids Res. 2000 Jan 1;28(1):169–170. doi: 10.1093/nar/28.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES