Skip to main content
RNA logoLink to RNA
. 2001 Aug;7(8):1097–1114. doi: 10.1017/s1355838201002035

Structural features in the HIV-1 repeat region facilitate strand transfer during reverse transcription.

B Berkhout 1, N L Vastenhouw 1, B I Klasens 1, H Huthoff 1
PMCID: PMC1370158  PMID: 11497429

Abstract

Two obligatory DNA strand transfers take place during reverse transcription of a retroviral RNA genome. The first strand transfer is facilitated by terminal repeat (R) elements in the viral genome. This strand-transfer reaction depends on base pairing between the cDNA of the 5'R and the 3'R. There is accumulating evidence that retroviral R regions contain features other than sequence complementarity that stimulate this critical nucleic acid hybridization step. The R region of the human immunodeficiency virus type 1 (HIV-1) is relatively extended (97 nt) and encodes two well-conserved stem-loop structures, the TAR and poly(A) hairpins. The role of these motifs was studied in an in vitro strand-transfer assay with two separate templates, the 5'R donor and the 3'R acceptor, and mutants thereof. The results indicate that the upper part of the TAR hairpin structure in the 5'R donor is critical for efficient strand transfer. This seems to pose a paradox, as the 5'R template is degraded by RNase H before strand transfer occurs. We propose that it is not the RNA hairpin motif in the 5'R donor, but rather the antisense motif in the ssDNA copy, which can also fold a hairpin structure, that is critical for strand transfer. Mutation of the loop sequence in the TAR hairpin of the donor RNA, which is copied in the loop of the cDNA hairpin, reduces the transfer efficiency more than fivefold. It is proposed that the natural strand-transfer reaction is enhanced by interaction of the anti-TAR ssDNA hairpin with the TAR hairpin in the 3'R acceptor. Base pairing can occur between the complementary loops ("loop-loop kissing"), and strand transfer is completed by the subsequent formation of an extended RNA-cDNA duplex.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allain B., Lapadat-Tapolsky M., Berlioz C., Darlix J. L. Transactivation of the minus-strand DNA transfer by nucleocapsid protein during reverse transcription of the retroviral genome. EMBO J. 1994 Feb 15;13(4):973–981. doi: 10.1002/j.1460-2075.1994.tb06342.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allain B., Rascle J. B., de Rocquigny H., Roques B., Darlix J. L. CIS elements and trans-acting factors required for minus strand DNA transfer during reverse transcription of the genomic RNA of murine leukemia virus. J Mol Biol. 1998 Mar 27;277(2):225–235. doi: 10.1006/jmbi.1997.1596. [DOI] [PubMed] [Google Scholar]
  3. Allawi H. T., SantaLucia J., Jr Thermodynamics and NMR of internal G.T mismatches in DNA. Biochemistry. 1997 Aug 26;36(34):10581–10594. doi: 10.1021/bi962590c. [DOI] [PubMed] [Google Scholar]
  4. Beekwilder M. J., Nieuwenhuizen R., van Duin J. Secondary structure model for the last two domains of single-stranded RNA phage Q beta. J Mol Biol. 1995 Apr 14;247(5):903–917. doi: 10.1006/jmbi.1995.0189. [DOI] [PubMed] [Google Scholar]
  5. Berkhout B., Das A. T., van Wamel J. L. The native structure of the human immunodeficiency virus type 1 RNA genome is required for the first strand transfer of reverse transcription. Virology. 1998 Sep 30;249(2):211–218. doi: 10.1006/viro.1998.9321. [DOI] [PubMed] [Google Scholar]
  6. Berkhout B., Jeang K. T. trans activation of human immunodeficiency virus type 1 is sequence specific for both the single-stranded bulge and loop of the trans-acting-responsive hairpin: a quantitative analysis. J Virol. 1989 Dec;63(12):5501–5504. doi: 10.1128/jvi.63.12.5501-5504.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Berkhout B., Klaver B., Das A. T. Forced evolution of a regulatory RNA helix in the HIV-1 genome. Nucleic Acids Res. 1997 Mar 1;25(5):940–947. doi: 10.1093/nar/25.5.940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Berkhout B., van Wamel J. L. The leader of the HIV-1 RNA genome forms a compactly folded tertiary structure. RNA. 2000 Feb;6(2):282–295. doi: 10.1017/s1355838200991684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Berkhout B., van Wamel J., Klaver B. Requirements for DNA strand transfer during reverse transcription in mutant HIV-1 virions. J Mol Biol. 1995 Sep 8;252(1):59–69. doi: 10.1006/jmbi.1994.0475. [DOI] [PubMed] [Google Scholar]
  10. Blain S. W., Goff S. P. Effects on DNA synthesis and translocation caused by mutations in the RNase H domain of Moloney murine leukemia virus reverse transcriptase. J Virol. 1995 Jul;69(7):4440–4452. doi: 10.1128/jvi.69.7.4440-4452.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Boiziau C., Dausse E., Yurchenko L., Toulmé J. J. DNA aptamers selected against the HIV-1 trans-activation-responsive RNA element form RNA-DNA kissing complexes. J Biol Chem. 1999 Apr 30;274(18):12730–12737. doi: 10.1074/jbc.274.18.12730. [DOI] [PubMed] [Google Scholar]
  12. Brown P. H., Tiley L. S., Cullen B. R. Effect of RNA secondary structure on polyadenylation site selection. Genes Dev. 1991 Jul;5(7):1277–1284. doi: 10.1101/gad.5.7.1277. [DOI] [PubMed] [Google Scholar]
  13. Brulé F., Bec G., Keith G., Le Grice S. F., Roques B. P., Ehresmann B., Ehresmann C., Marquet R. In vitro evidence for the interaction of tRNA(3)(Lys) with U3 during the first strand transfer of HIV-1 reverse transcription. Nucleic Acids Res. 2000 Jan 15;28(2):634–640. doi: 10.1093/nar/28.2.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cameron C. E., Ghosh M., Le Grice S. F., Benkovic S. J. Mutations in HIV reverse transcriptase which alter RNase H activity and decrease strand transfer efficiency are suppressed by HIV nucleocapsid protein. Proc Natl Acad Sci U S A. 1997 Jun 24;94(13):6700–6705. doi: 10.1073/pnas.94.13.6700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Canard B., Sarfati R., Richardson C. C. Binding of RNA template to a complex of HIV-1 reverse transcriptase/primer/template. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21):11279–11284. doi: 10.1073/pnas.94.21.11279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Chang K. Y., Tinoco I., Jr The structure of an RNA "kissing" hairpin complex of the HIV TAR hairpin loop and its complement. J Mol Biol. 1997 May 30;269(1):52–66. doi: 10.1006/jmbi.1997.1021. [DOI] [PubMed] [Google Scholar]
  17. Chen H., Wilcox G., Kertayadnya G., Wood C. Characterization of the Jembrana disease virus tat gene and the cis- and trans-regulatory elements in its long terminal repeats. J Virol. 1999 Jan;73(1):658–666. doi: 10.1128/jvi.73.1.658-666.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Cheslock S. R., Anderson J. A., Hwang C. K., Pathak V. K., Hu W. S. Utilization of nonviral sequences for minus-strand DNA transfer and gene reconstitution during retroviral replication. J Virol. 2000 Oct;74(20):9571–9579. doi: 10.1128/jvi.74.20.9571-9579.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Cheslock S. R., Anderson J. A., Hwang C. K., Pathak V. K., Hu W. S. Utilization of nonviral sequences for minus-strand DNA transfer and gene reconstitution during retroviral replication. J Virol. 2000 Oct;74(20):9571–9579. doi: 10.1128/jvi.74.20.9571-9579.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Clever J. L., Eckstein D. A., Parslow T. G. Genetic dissociation of the encapsidation and reverse transcription functions in the 5' R region of human immunodeficiency virus type 1. J Virol. 1999 Jan;73(1):101–109. doi: 10.1128/jvi.73.1.101-109.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Collett M. S., Leis J. P., Smith M. S., Faras A. J. Unwinding-like activity associated with avian retrovirus RNA-directed DNA polymerase. J Virol. 1978 May;26(2):498–509. doi: 10.1128/jvi.26.2.498-509.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Cupelli L., Okenquist S. A., Trubetskoy A., Lenz J. The secondary structure of the R region of a murine leukemia virus is important for stimulation of long terminal repeat-driven gene expression. J Virol. 1998 Oct;72(10):7807–7814. doi: 10.1128/jvi.72.10.7807-7814.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Dang Q., Hu W. S. Effects of homology length in the repeat region on minus-strand DNA transfer and retroviral replication. J Virol. 2001 Jan;75(2):809–820. doi: 10.1128/JVI.75.2.809-820.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Darlix J. L., Gabus C., Nugeyre M. T., Clavel F., Barré-Sinoussi F. Cis elements and trans-acting factors involved in the RNA dimerization of the human immunodeficiency virus HIV-1. J Mol Biol. 1990 Dec 5;216(3):689–699. doi: 10.1016/0022-2836(90)90392-Y. [DOI] [PubMed] [Google Scholar]
  25. Darlix J. L., Lapadat-Tapolsky M., de Rocquigny H., Roques B. P. First glimpses at structure-function relationships of the nucleocapsid protein of retroviruses. J Mol Biol. 1995 Dec 8;254(4):523–537. doi: 10.1006/jmbi.1995.0635. [DOI] [PubMed] [Google Scholar]
  26. Darlix J. L., Vincent A., Gabus C., de Rocquigny H., Roques B. Trans-activation of the 5' to 3' viral DNA strand transfer by nucleocapsid protein during reverse transcription of HIV1 RNA. C R Acad Sci III. 1993 Aug;316(8):763–771. [PubMed] [Google Scholar]
  27. Das A. T., Klaver B., Berkhout B. The 5' and 3' TAR elements of human immunodeficiency virus exert effects at several points in the virus life cycle. J Virol. 1998 Nov;72(11):9217–9223. doi: 10.1128/jvi.72.11.9217-9223.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Das A. T., Klaver B., Klasens B. I., van Wamel J. L., Berkhout B. A conserved hairpin motif in the R-U5 region of the human immunodeficiency virus type 1 RNA genome is essential for replication. J Virol. 1997 Mar;71(3):2346–2356. doi: 10.1128/jvi.71.3.2346-2356.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. DeStefano J. J., Buiser R. G., Mallaber L. M., Myers T. W., Bambara R. A., Fay P. J. Polymerization and RNase H activities of the reverse transcriptases from avian myeloblastosis, human immunodeficiency, and Moloney murine leukemia viruses are functionally uncoupled. J Biol Chem. 1991 Apr 25;266(12):7423–7431. [PubMed] [Google Scholar]
  30. DeStefano J. J. Kinetic analysis of the catalysis of strand transfer from internal regions of heteropolymeric RNA templates by human immunodeficiency virus reverse transcriptase. J Mol Biol. 1994 Nov 4;243(4):558–567. doi: 10.1016/0022-2836(94)90030-2. [DOI] [PubMed] [Google Scholar]
  31. Ducongé F., Toulmé J. J. In vitro selection identifies key determinants for loop-loop interactions: RNA aptamers selective for the TAR RNA element of HIV-1. RNA. 1999 Dec;5(12):1605–1614. doi: 10.1017/s1355838299991318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Fassati A., Goff S. P. Characterization of intracellular reverse transcription complexes of Moloney murine leukemia virus. J Virol. 1999 Nov;73(11):8919–8925. doi: 10.1128/jvi.73.11.8919-8925.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Fu T. B., Taylor J. When retroviral reverse transcriptases reach the end of their RNA templates. J Virol. 1992 Jul;66(7):4271–4278. doi: 10.1128/jvi.66.7.4271-4278.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Gabbara S., Davis W. R., Hupe L., Hupe D., Peliska J. A. Inhibitors of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Biochemistry. 1999 Oct 5;38(40):13070–13076. doi: 10.1021/bi991085n. [DOI] [PubMed] [Google Scholar]
  35. Gao H. Q., Sarafianos S. G., Arnold E., Hughes S. H. Similarities and differences in the RNase H activities of human immunodeficiency virus type 1 reverse transcriptase and Moloney murine leukemia virus reverse transcriptase. J Mol Biol. 1999 Dec 17;294(5):1097–1113. doi: 10.1006/jmbi.1999.3325. [DOI] [PubMed] [Google Scholar]
  36. Gilboa E., Mitra S. W., Goff S., Baltimore D. A detailed model of reverse transcription and tests of crucial aspects. Cell. 1979 Sep;18(1):93–100. doi: 10.1016/0092-8674(79)90357-x. [DOI] [PubMed] [Google Scholar]
  37. Girard F., Barbault F., Gouyette C., Huynh-Dinh T., Paoletti J., Lancelot G. Dimer initiation sequence of HIV-1Lai genomic RNA: NMR solution structure of the extended duplex. J Biomol Struct Dyn. 1999 Jun;16(6):1145–1157. doi: 10.1080/07391102.1999.10508323. [DOI] [PubMed] [Google Scholar]
  38. Gopalakrishnan V., Peliska J. A., Benkovic S. J. Human immunodeficiency virus type 1 reverse transcriptase: spatial and temporal relationship between the polymerase and RNase H activities. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10763–10767. doi: 10.1073/pnas.89.22.10763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Guo J., Henderson L. E., Bess J., Kane B., Levin J. G. Human immunodeficiency virus type 1 nucleocapsid protein promotes efficient strand transfer and specific viral DNA synthesis by inhibiting TAR-dependent self-priming from minus-strand strong-stop DNA. J Virol. 1997 Jul;71(7):5178–5188. doi: 10.1128/jvi.71.7.5178-5188.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Guo J., Wu T., Bess J., Henderson L. E., Levin J. G. Actinomycin D inhibits human immunodeficiency virus type 1 minus-strand transfer in in vitro and endogenous reverse transcriptase assays. J Virol. 1998 Aug;72(8):6716–6724. doi: 10.1128/jvi.72.8.6716-6724.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Harrich D., Hooker C. W., Parry E. The human immunodeficiency virus type 1 TAR RNA upper stem-loop plays distinct roles in reverse transcription and RNA packaging. J Virol. 2000 Jun;74(12):5639–5646. doi: 10.1128/jvi.74.12.5639-5646.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Harrich D., Ulich C., Gaynor R. B. A critical role for the TAR element in promoting efficient human immunodeficiency virus type 1 reverse transcription. J Virol. 1996 Jun;70(6):4017–4027. doi: 10.1128/jvi.70.6.4017-4027.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Herschlag D. RNA chaperones and the RNA folding problem. J Biol Chem. 1995 Sep 8;270(36):20871–20874. doi: 10.1074/jbc.270.36.20871. [DOI] [PubMed] [Google Scholar]
  44. Hu W. S., Temin H. M. Retroviral recombination and reverse transcription. Science. 1990 Nov 30;250(4985):1227–1233. doi: 10.1126/science.1700865. [DOI] [PubMed] [Google Scholar]
  45. Huthoff H., Berkhout B. Two alternating structures of the HIV-1 leader RNA. RNA. 2001 Jan;7(1):143–157. doi: 10.1017/s1355838201001881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Jeeninga R. E., Huthoff H. T., Gultyaev A. P., Berkhout B. The mechanism of actinomycin D-mediated inhibition of HIV-1 reverse transcription. Nucleic Acids Res. 1998 Dec 1;26(23):5472–5479. doi: 10.1093/nar/26.23.5472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Jones J. S., Allan R. W., Temin H. M. One retroviral RNA is sufficient for synthesis of viral DNA. J Virol. 1994 Jan;68(1):207–216. doi: 10.1128/jvi.68.1.207-216.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Kim J. K., Palaniappan C., Wu W., Fay P. J., Bambara R. A. Evidence for a unique mechanism of strand transfer from the transactivation response region of HIV-1. J Biol Chem. 1997 Jul 4;272(27):16769–16777. doi: 10.1074/jbc.272.27.16769. [DOI] [PubMed] [Google Scholar]
  49. Klaver B., Berkhout B. Evolution of a disrupted TAR RNA hairpin structure in the HIV-1 virus. EMBO J. 1994 Jun 1;13(11):2650–2659. doi: 10.1002/j.1460-2075.1994.tb06555.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Klaver B., Berkhout B. Premature strand transfer by the HIV-1 reverse transcriptase during strong-stop DNA synthesis. Nucleic Acids Res. 1994 Jan 25;22(2):137–144. doi: 10.1093/nar/22.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Kulpa D., Topping R., Telesnitsky A. Determination of the site of first strand transfer during Moloney murine leukemia virus reverse transcription and identification of strand transfer-associated reverse transcriptase errors. EMBO J. 1997 Feb 17;16(4):856–865. doi: 10.1093/emboj/16.4.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Lapadat-Tapolsky M., Pernelle C., Borie C., Darlix J. L. Analysis of the nucleic acid annealing activities of nucleocapsid protein from HIV-1. Nucleic Acids Res. 1995 Jul 11;23(13):2434–2441. doi: 10.1093/nar/23.13.2434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Lobel L. I., Goff S. P. Reverse transcription of retroviral genomes: mutations in the terminal repeat sequences. J Virol. 1985 Feb;53(2):447–455. doi: 10.1128/jvi.53.2.447-455.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Luo G. X., Taylor J. Template switching by reverse transcriptase during DNA synthesis. J Virol. 1990 Sep;64(9):4321–4328. doi: 10.1128/jvi.64.9.4321-4328.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Mang R., Goudsmit J., van der Kuyl A. C. Novel endogenous type C retrovirus in baboons: complete sequence, providing evidence for baboon endogenous virus gag-pol ancestry. J Virol. 1999 Aug;73(8):7021–7026. doi: 10.1128/jvi.73.8.7021-7026.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Mizokami M., Orito E., Gibo Y., Suzuki K., Ohba K., Ohno T., Lau J. Y. Genotype, serum level of hepatitis C virus RNA and liver histology as predictors of response to interferon-alpha 2a therapy in Japanese patients with chronic hepatitis C. Liver. 1996 Feb;16(1):23–27. doi: 10.1111/j.1600-0676.1996.tb00699.x. [DOI] [PubMed] [Google Scholar]
  57. Nagy P. D., Zhang C., Simon A. E. Dissecting RNA recombination in vitro: role of RNA sequences and the viral replicase. EMBO J. 1998 Apr 15;17(8):2392–2403. doi: 10.1093/emboj/17.8.2392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Nair T. M., Myszka D. G., Davis D. R. Surface plasmon resonance kinetic studies of the HIV TAR RNA kissing hairpin complex and its stabilization by 2-thiouridine modification. Nucleic Acids Res. 2000 May 1;28(9):1935–1940. doi: 10.1093/nar/28.9.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Negroni M., Buc H. Copy-choice recombination by reverse transcriptases: reshuffling of genetic markers mediated by RNA chaperones. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6385–6390. doi: 10.1073/pnas.120520497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Negroni M., Buc H. Recombination during reverse transcription: an evaluation of the role of the nucleocapsid protein. J Mol Biol. 1999 Feb 12;286(1):15–31. doi: 10.1006/jmbi.1998.2460. [DOI] [PubMed] [Google Scholar]
  61. Ohi Y., Clever J. L. Sequences in the 5' and 3' R elements of human immunodeficiency virus type 1 critical for efficient reverse transcription. J Virol. 2000 Sep;74(18):8324–8334. doi: 10.1128/jvi.74.18.8324-8334.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Pathak V. K., Temin H. M. 5-Azacytidine and RNA secondary structure increase the retrovirus mutation rate. J Virol. 1992 May;66(5):3093–3100. doi: 10.1128/jvi.66.5.3093-3100.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Peliska J. A., Balasubramanian S., Giedroc D. P., Benkovic S. J. Recombinant HIV-1 nucleocapsid protein accelerates HIV-1 reverse transcriptase catalyzed DNA strand transfer reactions and modulates RNase H activity. Biochemistry. 1994 Nov 22;33(46):13817–13823. doi: 10.1021/bi00250a036. [DOI] [PubMed] [Google Scholar]
  64. Peliska J. A., Benkovic S. J. Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Science. 1992 Nov 13;258(5085):1112–1118. doi: 10.1126/science.1279806. [DOI] [PubMed] [Google Scholar]
  65. Rein A., Henderson L. E., Levin J. G. Nucleic-acid-chaperone activity of retroviral nucleocapsid proteins: significance for viral replication. Trends Biochem Sci. 1998 Aug;23(8):297–301. doi: 10.1016/s0968-0004(98)01256-0. [DOI] [PubMed] [Google Scholar]
  66. Rodríguez-Rodríguez L., Tsuchihashi Z., Fuentes G. M., Bambara R. A., Fay P. J. Influence of human immunodeficiency virus nucleocapsid protein on synthesis and strand transfer by the reverse transcriptase in vitro. J Biol Chem. 1995 Jun 23;270(25):15005–15011. doi: 10.1074/jbc.270.25.15005. [DOI] [PubMed] [Google Scholar]
  67. SantaLucia J., Jr A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1460–1465. doi: 10.1073/pnas.95.4.1460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Skripkin E., Paillart J. C., Marquet R., Ehresmann B., Ehresmann C. Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4945–4949. doi: 10.1073/pnas.91.11.4945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Tanese N., Telesnitsky A., Goff S. P. Abortive reverse transcription by mutants of Moloney murine leukemia virus deficient in the reverse transcriptase-associated RNase H function. J Virol. 1991 Aug;65(8):4387–4397. doi: 10.1128/jvi.65.8.4387-4397.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Topping R., Demoitie M. A., Shin N. H., Telesnitsky A. Cis-acting elements required for strong stop acceptor template selection during Moloney murine leukemia virus reverse transcription. J Mol Biol. 1998 Aug 7;281(1):1–15. doi: 10.1006/jmbi.1998.1929. [DOI] [PubMed] [Google Scholar]
  71. Trubetskoy A. M., Okenquist S. A., Lenz J. R region sequences in the long terminal repeat of a murine retrovirus specifically increase expression of unspliced RNAs. J Virol. 1999 Apr;73(4):3477–3483. doi: 10.1128/jvi.73.4.3477-3483.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Tsuchihashi Z., Brown P. O. DNA strand exchange and selective DNA annealing promoted by the human immunodeficiency virus type 1 nucleocapsid protein. J Virol. 1994 Sep;68(9):5863–5870. doi: 10.1128/jvi.68.9.5863-5870.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Wu W., Blumberg B. M., Fay P. J., Bambara R. A. Strand transfer mediated by human immunodeficiency virus reverse transcriptase in vitro is promoted by pausing and results in misincorporation. J Biol Chem. 1995 Jan 6;270(1):325–332. doi: 10.1074/jbc.270.1.325. [DOI] [PubMed] [Google Scholar]
  74. Wu W., Henderson L. E., Copeland T. D., Gorelick R. J., Bosche W. J., Rein A., Levin J. G. Human immunodeficiency virus type 1 nucleocapsid protein reduces reverse transcriptase pausing at a secondary structure near the murine leukemia virus polypurine tract. J Virol. 1996 Oct;70(10):7132–7142. doi: 10.1128/jvi.70.10.7132-7142.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Yin P. D., Pathak V. K., Rowan A. E., Teufel R. J., 2nd, Hu W. S. Utilization of nonhomologous minus-strand DNA transfer to generate recombinant retroviruses. J Virol. 1997 Mar;71(3):2487–2494. doi: 10.1128/jvi.71.3.2487-2494.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. You J. C., McHenry C. S. Human immunodeficiency virus nucleocapsid protein accelerates strand transfer of the terminally redundant sequences involved in reverse transcription. J Biol Chem. 1994 Dec 16;269(50):31491–31495. [PubMed] [Google Scholar]
  77. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science. 1989 Apr 7;244(4900):48–52. doi: 10.1126/science.2468181. [DOI] [PubMed] [Google Scholar]
  78. van Wamel J. L., Berkhout B. The first strand transfer during HIV-1 reverse transcription can occur either intramolecularly or intermolecularly. Virology. 1998 May 10;244(2):245–251. doi: 10.1006/viro.1998.9096. [DOI] [PubMed] [Google Scholar]

Articles from RNA are provided here courtesy of The RNA Society

RESOURCES