Abstract
Divalent metal ions play a crucial role in RNA structure and catalysis. Phosphorothioate substitution and manganese rescue experiments can reveal phosphate oxygens interacting specifically with magnesium ions essential for structure and/or activity. In this study, phosphorothioate interference experiments in combination with structural sensitive circular dichroism spectroscopy have been used to probe molecular interactions underlying an important RNA structural motif. We have studied a synthetic model of the P4-P6 triple-helical domain in the bacteriophage T4 nrdB group I intron, which has a core sequence analogous to the Tetrahymena ribozyme. Rp and Sp sulfur substitutions were introduced into two adjacent nucleotides positioned at the 3' end of helix P6 (U452) and in the joining region J6/7 (U453). The effects of sulfur substitution on triple helix formation in the presence of different ratios of magnesium and manganese were studied by the use of difference circular dichroism spectroscopy. The results show that the pro-Sp oxygen of U452 acts as a ligand for a structurally important magnesium ion, whereas no such effect is seen for the pro-Rp oxygen of U452. The importance of the pro-Rp and pro-Sp oxygens of U453 is less clear, because addition of manganese could not significantly restore the triple-helical interactions within the isolated substituted model systems. The interpretation is that U453 is so sensitive to structural disturbance that any change at this position hinders the proper formation of the triple helix.
Full Text
The Full Text of this article is available as a PDF (2.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Basu S., Strobel S. A. Thiophilic metal ion rescue of phosphorothioate interference within the Tetrahymena ribozyme P4-P6 domain. RNA. 1999 Nov;5(11):1399–1407. doi: 10.1017/s135583829999115x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Kundrot C. E., Cech T. R., Doudna J. A. Crystal structure of a group I ribozyme domain: principles of RNA packing. Science. 1996 Sep 20;273(5282):1678–1685. doi: 10.1126/science.273.5282.1678. [DOI] [PubMed] [Google Scholar]
- Cate J. H., Gooding A. R., Podell E., Zhou K., Golden B. L., Szewczak A. A., Kundrot C. E., Cech T. R., Doudna J. A. RNA tertiary structure mediation by adenosine platforms. Science. 1996 Sep 20;273(5282):1696–1699. doi: 10.1126/science.273.5282.1696. [DOI] [PubMed] [Google Scholar]
- Chastain M., Tinoco I., Jr A base-triple structural domain in RNA. Biochemistry. 1992 Dec 29;31(51):12733–12741. doi: 10.1021/bi00166a004. [DOI] [PubMed] [Google Scholar]
- Chowrira B. M., Burke J. M. Extensive phosphorothioate substitution yields highly active and nuclease-resistant hairpin ribozymes. Nucleic Acids Res. 1992 Jun 11;20(11):2835–2840. doi: 10.1093/nar/20.11.2835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christian E. L., Yarus M. Metal coordination sites that contribute to structure and catalysis in the group I intron from Tetrahymena. Biochemistry. 1993 May 4;32(17):4475–4480. doi: 10.1021/bi00068a001. [DOI] [PubMed] [Google Scholar]
- Cowan J. A. Metal Activation of Enzymes in Nucleic Acid Biochemistry. Chem Rev. 1998 May 7;98(3):1067–1088. doi: 10.1021/cr960436q. [DOI] [PubMed] [Google Scholar]
- Dahm S. C., Uhlenbeck O. C. Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry. 1991 Oct 1;30(39):9464–9469. doi: 10.1021/bi00103a011. [DOI] [PubMed] [Google Scholar]
- Damberger S. H., Gutell R. R. A comparative database of group I intron structures. Nucleic Acids Res. 1994 Sep;22(17):3508–3510. doi: 10.1093/nar/22.17.3508. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dreef-Tromp C. M., van Dam E. M., van den Elst H., van der Marel G. A., van Boom J. H. Solid-phase synthesis of H-Phe-Tyr-(pATAT)-NH2: a nucleopeptide fragment from the nucleoprotein of bacteriophage phi X174. Nucleic Acids Res. 1990 Nov 25;18(22):6491–6495. doi: 10.1093/nar/18.22.6491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Feig A. L. The use of manganese as a probe for elucidating the role of magnesium ions in ribozymes. Met Ions Biol Syst. 2000;37:157–182. [PubMed] [Google Scholar]
- Golden B. L., Gooding A. R., Podell E. R., Cech T. R. A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science. 1998 Oct 9;282(5387):259–264. doi: 10.1126/science.282.5387.259. [DOI] [PubMed] [Google Scholar]
- Gray D. M., Ratliff R. L., Vaughan M. R. Circular dichroism spectroscopy of DNA. Methods Enzymol. 1992;211:389–406. doi: 10.1016/0076-6879(92)11021-a. [DOI] [PubMed] [Google Scholar]
- Green R., Szostak J. W. In vitro genetic analysis of the hinge region between helical elements P5-P4-P6 and P7-P3-P8 in the sunY group I self-splicing intron. J Mol Biol. 1994 Jan 7;235(1):140–155. doi: 10.1016/s0022-2836(05)80022-1. [DOI] [PubMed] [Google Scholar]
- Horton T. E., Maderia M., DeRose V. J. Impact of phosphorothioate substitutions on the thermodynamic stability of an RNA GAAA tetraloop: an unexpected stabilization. Biochemistry. 2000 Jul 18;39(28):8201–8207. doi: 10.1021/bi000141d. [DOI] [PubMed] [Google Scholar]
- Johnson W. C., Jr Circular dichroism and its empirical application to biopolymers. Methods Biochem Anal. 1985;31:61–163. doi: 10.1002/9780470110522.ch2. [DOI] [PubMed] [Google Scholar]
- Maderia M., Horton T. E., DeRose V. J. Metal interactions with a GAAA RNA tetraloop characterized by (31)P NMR and phosphorothioate substitutions. Biochemistry. 2000 Jul 18;39(28):8193–8200. doi: 10.1021/bi000140l. [DOI] [PubMed] [Google Scholar]
- Maderia M., Hunsicker L. M., DeRose V. J. Metal-phosphate interactions in the hammerhead ribozyme observed by 31P NMR and phosphorothioate substitutions. Biochemistry. 2000 Oct 10;39(40):12113–12120. doi: 10.1021/bi001249w. [DOI] [PubMed] [Google Scholar]
- Michel F., Ellington A. D., Couture S., Szostak J. W. Phylogenetic and genetic evidence for base-triples in the catalytic domain of group I introns. Nature. 1990 Oct 11;347(6293):578–580. doi: 10.1038/347578a0. [DOI] [PubMed] [Google Scholar]
- Michel F., Westhof E. Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol. 1990 Dec 5;216(3):585–610. doi: 10.1016/0022-2836(90)90386-Z. [DOI] [PubMed] [Google Scholar]
- Piccirilli J. A., Vyle J. S., Caruthers M. H., Cech T. R. Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature. 1993 Jan 7;361(6407):85–88. doi: 10.1038/361085a0. [DOI] [PubMed] [Google Scholar]
- Puglisi J. D., Tinoco I., Jr Absorbance melting curves of RNA. Methods Enzymol. 1989;180:304–325. doi: 10.1016/0076-6879(89)80108-9. [DOI] [PubMed] [Google Scholar]
- Sarkar M., Dornberger U., Rozners E., Fritzsche H., Strömberg R., Gräslund A. FTIR spectroscopic studies of oligonucleotides that model a triple-helical domain in self-splicing group I introns. Biochemistry. 1997 Dec 9;36(49):15463–15471. doi: 10.1021/bi9702243. [DOI] [PubMed] [Google Scholar]
- Sarkar M., Sigurdsson S., Tomac S., Sen S., Rozners E., Sjöberg B. M., Strömberg R., Gräslund A. A synthetic model for triple-helical domains in self-splicing group I introns studied by ultraviolet and circular dichroism spectroscopy. Biochemistry. 1996 Apr 16;35(15):4678–4688. doi: 10.1021/bi9523466. [DOI] [PubMed] [Google Scholar]
- Scott E. C., Uhlenbeck O. C. A re-investigation of the thio effect at the hammerhead cleavage site. Nucleic Acids Res. 1999 Jan 15;27(2):479–484. doi: 10.1093/nar/27.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shan S. O., Herschlag D. An unconventional origin of metal-ion rescue and inhibition in the Tetrahymena group I ribozyme reaction. RNA. 2000 Jun;6(6):795–813. doi: 10.1017/s1355838200000649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sjöberg B. M., Hahne S., Mathews C. Z., Mathews C. K., Rand K. N., Gait M. J. The bacteriophage T4 gene for the small subunit of ribonucleotide reductase contains an intron. EMBO J. 1986 Aug;5(8):2031–2036. doi: 10.1002/j.1460-2075.1986.tb04460.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith J. S., Nikonowicz E. P. Phosphorothioate substitution can substantially alter RNA conformation. Biochemistry. 2000 May 16;39(19):5642–5652. doi: 10.1021/bi992712b. [DOI] [PubMed] [Google Scholar]
- Tinoco I., Jr, Bustamante C. How RNA folds. J Mol Biol. 1999 Oct 22;293(2):271–281. doi: 10.1006/jmbi.1999.3001. [DOI] [PubMed] [Google Scholar]
- Zarrinkar P. P., Williamson J. R. The kinetic folding pathway of the Tetrahymena ribozyme reveals possible similarities between RNA and protein folding. Nat Struct Biol. 1996 May;3(5):432–438. doi: 10.1038/nsb0596-432. [DOI] [PubMed] [Google Scholar]
